Optimizing Plant Growth Model Parameters for Genetic Selection Based on QTL Mapping

Voronique Letort, Paul Mahe, P. Cournède, P. Reffye, B. Courtois
{"title":"Optimizing Plant Growth Model Parameters for Genetic Selection Based on QTL Mapping","authors":"Voronique Letort, Paul Mahe, P. Cournède, P. Reffye, B. Courtois","doi":"10.1109/PMA.2006.35","DOIUrl":null,"url":null,"abstract":"An increasing interest is given to the potential benefits of introducing ecophysiological knowledge in breeding programs. Indeed, crop models provide powerful tools to predict phenotypic traits from new genotypes under untested environmental conditions. But, until now, few attempts have been undertaken to bridge the gap from genes to phenotype with a chain of functional processes. In this paper, we propose a framework for simulating plant growth from its genotype. Thus the genetic correlations between the parameters can be taken into consideration when optimization processes are used to define ideotypes based on model parameters. The example of virtual maize growing under constant environmental conditions is presented using the functional-structural model GreenLab.","PeriodicalId":315124,"journal":{"name":"2006 Second International Symposium on Plant Growth Modeling and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1899-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Second International Symposium on Plant Growth Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2006.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

An increasing interest is given to the potential benefits of introducing ecophysiological knowledge in breeding programs. Indeed, crop models provide powerful tools to predict phenotypic traits from new genotypes under untested environmental conditions. But, until now, few attempts have been undertaken to bridge the gap from genes to phenotype with a chain of functional processes. In this paper, we propose a framework for simulating plant growth from its genotype. Thus the genetic correlations between the parameters can be taken into consideration when optimization processes are used to define ideotypes based on model parameters. The example of virtual maize growing under constant environmental conditions is presented using the functional-structural model GreenLab.
基于QTL定位的植物生长模型遗传选择参数优化
在育种计划中引入生态生理学知识的潜在好处日益引起人们的兴趣。事实上,作物模型为在未经测试的环境条件下预测新基因型的表型性状提供了强有力的工具。但是,到目前为止,很少有人尝试通过一系列功能过程来弥合从基因到表型的差距。在本文中,我们提出了一个从基因型模拟植物生长的框架。因此,当基于模型参数的优化过程定义理想型时,可以考虑参数之间的遗传相关性。利用功能-结构模型GreenLab给出了恒定环境条件下虚拟玉米生长的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信