A GRU-Based Encoder-Decoder Approach with Attention for Online Handwritten Mathematical Expression Recognition

Jianshu Zhang, Jun Du, Lirong Dai
{"title":"A GRU-Based Encoder-Decoder Approach with Attention for Online Handwritten Mathematical Expression Recognition","authors":"Jianshu Zhang, Jun Du, Lirong Dai","doi":"10.1109/ICDAR.2017.152","DOIUrl":null,"url":null,"abstract":"In this study, we present a novel end-to-end approach based on the encoder-decoder framework with the attention mechanism for online handwritten mathematical expression recognition (OHMER). First, the input two-dimensional ink trajectory information of handwritten expression is encoded via the gated recurrent unit based recurrent neural network (GRU-RNN). Then the decoder is also implemented by the GRU-RNN with a coverage-based attention model. The proposed approach can simultaneously accomplish the symbol recognition and structural analysis to output a character sequence in LaTeX format. Validated on the CROHME 2014 competition task, our approach significantly outperforms the state-of-the-art with an expression recognition accuracy of 52.43% by only using the official training dataset. Furthermore, the alignments between the input trajectories of handwritten expressions and the output LaTeX sequences are visualized by the attention mechanism to show the effectiveness of the proposed method.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

In this study, we present a novel end-to-end approach based on the encoder-decoder framework with the attention mechanism for online handwritten mathematical expression recognition (OHMER). First, the input two-dimensional ink trajectory information of handwritten expression is encoded via the gated recurrent unit based recurrent neural network (GRU-RNN). Then the decoder is also implemented by the GRU-RNN with a coverage-based attention model. The proposed approach can simultaneously accomplish the symbol recognition and structural analysis to output a character sequence in LaTeX format. Validated on the CROHME 2014 competition task, our approach significantly outperforms the state-of-the-art with an expression recognition accuracy of 52.43% by only using the official training dataset. Furthermore, the alignments between the input trajectories of handwritten expressions and the output LaTeX sequences are visualized by the attention mechanism to show the effectiveness of the proposed method.
基于gru的在线手写体数学表达式识别的注意编解码器方法
在这项研究中,我们提出了一种基于编码器-解码器框架和注意机制的新颖的端到端方法,用于在线手写数学表达式识别(OHMER)。首先,通过基于门控递归单元的递归神经网络(GRU-RNN)对输入的手写表达式二维墨水轨迹信息进行编码;然后利用基于覆盖的注意力模型,利用GRU-RNN实现解码器。该方法可以同时完成符号识别和结构分析,输出LaTeX格式的字符序列。在CROHME 2014竞赛任务上验证,仅使用官方训练数据集,我们的方法就以52.43%的准确率显著优于最先进的表情识别方法。此外,通过注意机制将手写表达式的输入轨迹与输出LaTeX序列之间的对齐可视化,以显示所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信