Piezoelectric Vibration Energy Harvester Using Polyvinylidene Difluoride Film Formed by Bar-Coating Method and Its Spray- Coating Method on a Three Dimensional Surface
Hiroki Takise, Masato Suzuki, Tomokazu Takahashi, S. Aoyagi
{"title":"Piezoelectric Vibration Energy Harvester Using Polyvinylidene Difluoride Film Formed by Bar-Coating Method and Its Spray- Coating Method on a Three Dimensional Surface","authors":"Hiroki Takise, Masato Suzuki, Tomokazu Takahashi, S. Aoyagi","doi":"10.5772/INTECHOPEN.79192","DOIUrl":null,"url":null,"abstract":"the Abstract A cantilever-type vibration energy harvester (VEH) made of polyvinylidene difluoride (PVDF) was fabricated and characterized. PVDF is one of the polymer piezoelectric materials, which is more flexible than ceramic-based piezoelectric materials such as lead zirconate titanate (PZT). The fabrication process of VEH is as follows: a PVDF film was coated on a phosphor bronze plate by bar-coating method, followed by polarization by corona discharge method. Aluminum top electrode was deposited on the PVDF film by sputtering. One end of the plate was clamped by a fixture to form a cantilever, the length of which is 25 mm. Output power P at the resonance frequency (=55 Hz) was measured as a function of load resistance R with the acceleration set at 17 m/s 2 . Maximum output reached 4.3 μW at R = 2.1 MΩ. This result is not inferior compared with other reported VEHs using ceramic piezoelectric material. Spray coating was carried out to form PVDF film on a 3D surface. This method is suitable for fabricating a uniform thin film on a three-dimensional (3D) surface, even if it is complicatedly curved. In this study, PVDF film was formed on a 3D helical compressing spring, and the deposition on it was suc cessfully achieved.","PeriodicalId":302162,"journal":{"name":"Piezoelectricity - Organic and Inorganic Materials and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Piezoelectricity - Organic and Inorganic Materials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
the Abstract A cantilever-type vibration energy harvester (VEH) made of polyvinylidene difluoride (PVDF) was fabricated and characterized. PVDF is one of the polymer piezoelectric materials, which is more flexible than ceramic-based piezoelectric materials such as lead zirconate titanate (PZT). The fabrication process of VEH is as follows: a PVDF film was coated on a phosphor bronze plate by bar-coating method, followed by polarization by corona discharge method. Aluminum top electrode was deposited on the PVDF film by sputtering. One end of the plate was clamped by a fixture to form a cantilever, the length of which is 25 mm. Output power P at the resonance frequency (=55 Hz) was measured as a function of load resistance R with the acceleration set at 17 m/s 2 . Maximum output reached 4.3 μW at R = 2.1 MΩ. This result is not inferior compared with other reported VEHs using ceramic piezoelectric material. Spray coating was carried out to form PVDF film on a 3D surface. This method is suitable for fabricating a uniform thin film on a three-dimensional (3D) surface, even if it is complicatedly curved. In this study, PVDF film was formed on a 3D helical compressing spring, and the deposition on it was suc cessfully achieved.