Multi-level detector for pornographic content using CNN models

Quang-Huy Nguyen, Khac-Ngoc-Khoi Nguyen, Hoang-Loc Tran, Thanh-Thien Nguyen, Dinh-Duy Phan, Duc-Lung Vu
{"title":"Multi-level detector for pornographic content using CNN models","authors":"Quang-Huy Nguyen, Khac-Ngoc-Khoi Nguyen, Hoang-Loc Tran, Thanh-Thien Nguyen, Dinh-Duy Phan, Duc-Lung Vu","doi":"10.1109/RIVF48685.2020.9140734","DOIUrl":null,"url":null,"abstract":"This paper focuses on detecting and classifying pornographic content (images and videos) by using a multi-level CNN model with some supportive models. The main approaching method is to determine the images (keyframes extracted from videos) containing sensitives content or not by applying object detection model Mask R-CNN, which is the completely new approaching method in pornographic recognition. Moreover, the proposed model also adapts some other methods such as feature extraction and classifying based on CNN to increase the accuracy of the adaptive methods and ignore non-pornographic images and videos. Experimental results using the Pornography-800 and Pornography-2K datasets, performance of our method is reaching the accuracy of 92.13% and 90.40% respectively, show the effectiveness of the proposed method.","PeriodicalId":169999,"journal":{"name":"2020 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF48685.2020.9140734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper focuses on detecting and classifying pornographic content (images and videos) by using a multi-level CNN model with some supportive models. The main approaching method is to determine the images (keyframes extracted from videos) containing sensitives content or not by applying object detection model Mask R-CNN, which is the completely new approaching method in pornographic recognition. Moreover, the proposed model also adapts some other methods such as feature extraction and classifying based on CNN to increase the accuracy of the adaptive methods and ignore non-pornographic images and videos. Experimental results using the Pornography-800 and Pornography-2K datasets, performance of our method is reaching the accuracy of 92.13% and 90.40% respectively, show the effectiveness of the proposed method.
使用CNN模型的色情内容多级检测器
本文主要研究了基于多层CNN模型的色情内容(图像和视频)检测与分类。主要的逼近方法是应用目标检测模型Mask R-CNN来判断图像(从视频中提取的关键帧)是否含有敏感内容,这是一种全新的色情识别逼近方法。此外,该模型还适应了一些其他方法,如特征提取和基于CNN的分类,以提高自适应方法的准确性,并忽略了非色情图像和视频。在porn -800和porn - 2k数据集上的实验结果表明,该方法的准确率分别达到92.13%和90.40%,表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信