Phase unwrapping via diversity and graph cuts

J. Bioucas-Dias, Gonçalo Valadão
{"title":"Phase unwrapping via diversity and graph cuts","authors":"J. Bioucas-Dias, Gonçalo Valadão","doi":"10.1109/IWSSIP.2008.4604474","DOIUrl":null,"url":null,"abstract":"Many imaging techniques, e.g., interferometric synthetic aperture radar, magnetic resonance imaging, diffraction tomography, yield interferometric phase images. For these applications, the measurements are modulo-2p, where p is the period, a certain real number, whereas the aimed information is contained in the true phase value. The process of inferring the phase from its wrapped modulo-2p values is the so-called phase unwrapping (PU) problem. In this paper we present a graph-cuts based PU technique that uses two wrapped images, of the same scene, generated with different periods p1, p2. This diversity allows to reduce the ambiguity effect of the wrapping modulo-2p operation, and is extensible to more than two periods. To infer the original data, we assume a first order Markov random field (MRF) prior and a maximum a posteriori probability (MAP) optimization viewpoint. The employed objective functionals have nonconvex, sinusoidal, data fidelity terms and a non isotropic total variation (TV) prior. This is an integer, nonconvex optimization problem for which we apply a technique that yields an exact, low order polynomial complexity, global solution. At its core is a non iterative graph cuts based optimization algorithm. As far as we know, all the few existing period diversity capable PU techniques for images, are either far too simplistic or employ simulated annealing, thus exponential complexity in time, optimization algorithms.","PeriodicalId":322045,"journal":{"name":"2008 15th International Conference on Systems, Signals and Image Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 15th International Conference on Systems, Signals and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2008.4604474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Many imaging techniques, e.g., interferometric synthetic aperture radar, magnetic resonance imaging, diffraction tomography, yield interferometric phase images. For these applications, the measurements are modulo-2p, where p is the period, a certain real number, whereas the aimed information is contained in the true phase value. The process of inferring the phase from its wrapped modulo-2p values is the so-called phase unwrapping (PU) problem. In this paper we present a graph-cuts based PU technique that uses two wrapped images, of the same scene, generated with different periods p1, p2. This diversity allows to reduce the ambiguity effect of the wrapping modulo-2p operation, and is extensible to more than two periods. To infer the original data, we assume a first order Markov random field (MRF) prior and a maximum a posteriori probability (MAP) optimization viewpoint. The employed objective functionals have nonconvex, sinusoidal, data fidelity terms and a non isotropic total variation (TV) prior. This is an integer, nonconvex optimization problem for which we apply a technique that yields an exact, low order polynomial complexity, global solution. At its core is a non iterative graph cuts based optimization algorithm. As far as we know, all the few existing period diversity capable PU techniques for images, are either far too simplistic or employ simulated annealing, thus exponential complexity in time, optimization algorithms.
阶段展开通过多样性和图形切割
许多成像技术,如干涉合成孔径雷达、磁共振成像、衍射层析成像,都会产生干涉相位图像。对于这些应用,测量是模2p,其中p是周期,一个特定的实数,而目标信息包含在真相位值中。从包裹的模2p值推断相位的过程称为相位解包裹(PU)问题。在本文中,我们提出了一种基于图形切割的PU技术,该技术使用同一场景的两个包裹图像,以不同的周期p1, p2生成。这种多样性可以减少包装模2p操作的歧义效应,并且可以扩展到两个以上的周期。为了推断原始数据,我们假设一个一阶马尔可夫随机场(MRF)先验和一个最大后验概率(MAP)优化的观点。所采用的目标函数具有非凸、正弦、数据保真度项和非各向同性总变分(TV)先验。这是一个整数,非凸优化问题,我们应用一种技术,产生一个精确的,低阶多项式复杂度,全局解决方案。其核心是一种基于非迭代图切的优化算法。据我们所知,所有少数现有的周期分集能力的图像PU技术,要么太过简单,要么采用模拟退火,因此在时间上的指数复杂度,优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信