Memory allocation and optimization in system-level architectural synthesis

Shuo Li, A. Hemani
{"title":"Memory allocation and optimization in system-level architectural synthesis","authors":"Shuo Li, A. Hemani","doi":"10.1109/ReCoSoC.2013.6581537","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to optimally allocate memory resources in a system-level synthesis flow, which converts a dataflow style system description (synchronous data flow) into the register-transfer level description in the specified implementation style (ASIC, FPGA or CGRA). The first problem is encountered by the synthesis flow is that since it covers different implementation styles, a generic model is required to support resource allocation and optimization. The second problem is the memory allocation method to optimally allocate memory resources in the RTL model. The contribution of this paper has two parts, which are 1) a generic memory model for different memory architectures in ASIC, FPGA and CGRA, and 2) a memory allocation and optimization method for optimally allocating storage elements in the intermediate representation with actual implementations (e.g. on-chip SRAM for ASIC, memory controller and off-chip SDRAM for FPGA). The memory allocation method is an implementation style dependent procedure and has three steps: architecture independent optimization, resource allocation and architecture depended optimization. The experimental result shows that the proposed method is efficient and effective. The automatically generated implementation uses only approximately 4% more resources compared to manual implementation. The fast and automatic memory allocation method enables fast design space exploration that requires little effort form the system designer.","PeriodicalId":354964,"journal":{"name":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2013.6581537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present a novel approach to optimally allocate memory resources in a system-level synthesis flow, which converts a dataflow style system description (synchronous data flow) into the register-transfer level description in the specified implementation style (ASIC, FPGA or CGRA). The first problem is encountered by the synthesis flow is that since it covers different implementation styles, a generic model is required to support resource allocation and optimization. The second problem is the memory allocation method to optimally allocate memory resources in the RTL model. The contribution of this paper has two parts, which are 1) a generic memory model for different memory architectures in ASIC, FPGA and CGRA, and 2) a memory allocation and optimization method for optimally allocating storage elements in the intermediate representation with actual implementations (e.g. on-chip SRAM for ASIC, memory controller and off-chip SDRAM for FPGA). The memory allocation method is an implementation style dependent procedure and has three steps: architecture independent optimization, resource allocation and architecture depended optimization. The experimental result shows that the proposed method is efficient and effective. The automatically generated implementation uses only approximately 4% more resources compared to manual implementation. The fast and automatic memory allocation method enables fast design space exploration that requires little effort form the system designer.
系统级体系结构综合中的内存分配和优化
在本文中,我们提出了一种在系统级综合流中优化分配内存资源的新方法,该方法将数据流风格的系统描述(同步数据流)转换为指定实现风格(ASIC, FPGA或CGRA)的寄存器传输级描述。综合流遇到的第一个问题是,由于它涵盖了不同的实现风格,因此需要一个通用模型来支持资源分配和优化。第二个问题是如何在RTL模型中优化分配内存资源。本文的贡献有两个部分,1)针对ASIC、FPGA和CGRA中不同存储架构的通用内存模型,2)在实际实现(例如ASIC的片上SRAM,存储器控制器和FPGA的片外SDRAM)的中间表示中最佳分配存储元素的内存分配和优化方法。内存分配方法是一个依赖于实现风格的过程,分为体系结构独立优化、资源分配和体系结构依赖优化三个步骤。实验结果表明,该方法是有效的。与手动实现相比,自动生成的实现只多使用大约4%的资源。快速和自动的内存分配方法,使快速的设计空间探索,需要很少的努力,从系统设计人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信