A novel approach for image steganalysis

G. Bugár, V. Bánoci, M. Broda, D. Levický
{"title":"A novel approach for image steganalysis","authors":"G. Bugár, V. Bánoci, M. Broda, D. Levický","doi":"10.1109/ELMAR.2014.6923344","DOIUrl":null,"url":null,"abstract":"Since JPEG images have been widely used in our daily life, the steganalysis for JPEG images becomes very important and significant. The Article addresses steganalysis in static images based on DCT transformed region, able to recognize the most popular steganography algorithms occurring on the Internet. We propose a new steganalysis method, where statistical properties of the image are explored, regardless the embedding procedure employed. The feature set used for classification of images consists of 285 statistical features. Experimental results show that in comparing with the universal steganalysis method for JPEG stego images, our method improves detection of widely used steganographic method in detection process, which provides observable differences in investigation performance.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Since JPEG images have been widely used in our daily life, the steganalysis for JPEG images becomes very important and significant. The Article addresses steganalysis in static images based on DCT transformed region, able to recognize the most popular steganography algorithms occurring on the Internet. We propose a new steganalysis method, where statistical properties of the image are explored, regardless the embedding procedure employed. The feature set used for classification of images consists of 285 statistical features. Experimental results show that in comparing with the universal steganalysis method for JPEG stego images, our method improves detection of widely used steganographic method in detection process, which provides observable differences in investigation performance.
一种新的图像隐写分析方法
由于JPEG图像在我们的日常生活中得到了广泛的应用,因此对JPEG图像的隐写分析变得非常重要和有意义。本文讨论了基于DCT变换区域的静态图像隐写分析,能够识别目前互联网上最流行的隐写算法。我们提出了一种新的隐写分析方法,在这种方法中,无论采用何种嵌入程序,都可以探索图像的统计特性。用于图像分类的特征集由285个统计特征组成。实验结果表明,与JPEG隐写图像的通用隐写分析方法相比,本文方法在检测过程中改进了广泛使用的隐写方法的检测,在侦查性能上有明显的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信