The Reproducibility Crisis

G. Smith, J. Cordes
{"title":"The Reproducibility Crisis","authors":"G. Smith, J. Cordes","doi":"10.1093/oso/9780198864165.003.0008","DOIUrl":null,"url":null,"abstract":"Attempts to replicate reported studies often fail because the research relied on data mining—searching through data for patterns without any pre-specified, coherent theories. The perils of data mining can be exacerbated by data torturing—slicing, dicing, and otherwise mangling data to create patterns. If there is no underlying reason for a pattern, it is likely to disappear when someone attempts to replicate the study. Big data and powerful computers are part of the problem, not the solution, in that they can easily identify an essentially unlimited number of phantom patterns and relationships, which vanish when confronted with fresh data. If a researcher will benefit from a claim, it is likely to be biased. If a claim sounds implausible, it is probably misleading. If the statistical evidence sounds too good to be true, it probably is.","PeriodicalId":333158,"journal":{"name":"The Phantom Pattern Problem","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Phantom Pattern Problem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198864165.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Attempts to replicate reported studies often fail because the research relied on data mining—searching through data for patterns without any pre-specified, coherent theories. The perils of data mining can be exacerbated by data torturing—slicing, dicing, and otherwise mangling data to create patterns. If there is no underlying reason for a pattern, it is likely to disappear when someone attempts to replicate the study. Big data and powerful computers are part of the problem, not the solution, in that they can easily identify an essentially unlimited number of phantom patterns and relationships, which vanish when confronted with fresh data. If a researcher will benefit from a claim, it is likely to be biased. If a claim sounds implausible, it is probably misleading. If the statistical evidence sounds too good to be true, it probably is.
繁殖危机
试图复制已报道的研究往往会失败,因为研究依赖于数据挖掘——在没有任何预先指定的、连贯的理论的情况下,在数据中搜索模式。数据折磨可能会加剧数据挖掘的危险——对数据进行切片、切块和以其他方式篡改数据以创建模式。如果一种模式没有潜在的原因,那么当有人试图复制该研究时,它很可能会消失。大数据和强大的计算机是问题的一部分,而不是解决方案,因为它们可以很容易地识别出基本上是无限数量的虚幻模式和关系,而当面对新的数据时,这些模式和关系就会消失。如果研究人员将从一项主张中受益,那么它很可能是有偏见的。如果一种说法听起来令人难以置信,它很可能是误导。如果统计证据听起来好得令人难以置信,那么它很可能是真的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信