Koşullu Volatilitenin Modellenmesinde Destek Vektör Makinesi GARCH Modeli Ve Türk Finans Piyasaları Üzerine Bir Uygulama (Support Vector Machine GARCH Model in Modelling Conditional Volatility and an Application to Turkish Financial Markets)

M. Bildirici, Ozgur Omer Ersin
{"title":"Koşullu Volatilitenin Modellenmesinde Destek Vektör Makinesi GARCH Modeli Ve Türk Finans Piyasaları Üzerine Bir Uygulama (Support Vector Machine GARCH Model in Modelling Conditional Volatility and an Application to Turkish Financial Markets)","authors":"M. Bildirici, Ozgur Omer Ersin","doi":"10.2139/ssrn.2222071","DOIUrl":null,"url":null,"abstract":"The English version of this paper can be found at: http://ssrn.com/abstract=2227747Calisma, temel GARCH modelinin Destek Vektor Makinesi ve Yapay Sinir Aglari ile iyilestirilmis modellerin incelenerek GARCH modelinin tahmin performansinin iyilestirilmesi bakimindan basarisinin test edilmesini amaclamaktadir. YSA yapisinin temel alindigi NN-GARCH modelinde Donaldson ve Kamstra (1997) NN-GARCH mimarisinin temel alindigi ve farkli ogrenme algoritmalari ile modellendigi Bildirici ve Ersin (2009) temel alinirken, SVR-GARCH modelinin olusturulmasinda Ou ve Wang (2010) ve Perez-Cruz (2003) calismalarindan hareket edilmistir. Modeller, tahmin basarisi bakimindan degerlendirilmistir. Bu kapsamda, IMKB-100 endeksinde gunluk getiriler modellenmesinde temel alinan GARCH, SVR-GARCH ve MLP-GARCH modelleri, orneklem ici ve orneklem disi tahmin basarisi acisindan degerlendirilmistir. Ampirik bulgular cercevesinde, seride one cikan leptokurtik dagilima ek olarak asimetri ve dogrusal olmama karakteristiklerinin SVR-GARCH ve MLP-GARCH modelleri ile modellenebilecegi; farkli hata kriterleri ve esit tahmin tutarliligi testleri kapsaminda temel GARCH modellerinden basarili bulundugu; orneklem disi tahmin basarisi bakimindan ise, Diebold Mariano testlerinden hareketle SVR-GARCH ve MLP-GARCH modelleri icin esit tahmin tutarliliginin 8 farkli gelecek tahmininden 6'si icin reddedilememekte iken; 2'si icin ise SVR-GARCH modelinin daha basarili bulundugu sonuclarina varilmaktadir. The study aims to augment commonly applied volatility models with support vector machines and neural networks. The proposed modeling strategy benefits from neural network based GARCH models of Donaldson and Kamstra (1997) and SVR-GARCH models discussed by Ou and Wang (2010) and Perez-Cruz (2003). Models are evaluated for in-sample and out-of-sample forecasting of daily returns in Istanbul ISE100 stock index. Results suggest that volatility clustering, asymmetry and nonlinearity characteristics are modeled more effectively with SVR-GARCH and MLP-GARCH models compared to the basic GARCH models. In terms of out-of-sample forecasting capabilities, Diebold-Mariano tests show that equal forecast accuracy could not be rejected for most of the horizons for the MLP-GARCH and SVR-GARCH models. On the other hand, SVR-GARCH is found to possess better forecast accuracy in 2 out of 8 forecast competitions.","PeriodicalId":436489,"journal":{"name":"HEN: Econometrics (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HEN: Econometrics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2222071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The English version of this paper can be found at: http://ssrn.com/abstract=2227747Calisma, temel GARCH modelinin Destek Vektor Makinesi ve Yapay Sinir Aglari ile iyilestirilmis modellerin incelenerek GARCH modelinin tahmin performansinin iyilestirilmesi bakimindan basarisinin test edilmesini amaclamaktadir. YSA yapisinin temel alindigi NN-GARCH modelinde Donaldson ve Kamstra (1997) NN-GARCH mimarisinin temel alindigi ve farkli ogrenme algoritmalari ile modellendigi Bildirici ve Ersin (2009) temel alinirken, SVR-GARCH modelinin olusturulmasinda Ou ve Wang (2010) ve Perez-Cruz (2003) calismalarindan hareket edilmistir. Modeller, tahmin basarisi bakimindan degerlendirilmistir. Bu kapsamda, IMKB-100 endeksinde gunluk getiriler modellenmesinde temel alinan GARCH, SVR-GARCH ve MLP-GARCH modelleri, orneklem ici ve orneklem disi tahmin basarisi acisindan degerlendirilmistir. Ampirik bulgular cercevesinde, seride one cikan leptokurtik dagilima ek olarak asimetri ve dogrusal olmama karakteristiklerinin SVR-GARCH ve MLP-GARCH modelleri ile modellenebilecegi; farkli hata kriterleri ve esit tahmin tutarliligi testleri kapsaminda temel GARCH modellerinden basarili bulundugu; orneklem disi tahmin basarisi bakimindan ise, Diebold Mariano testlerinden hareketle SVR-GARCH ve MLP-GARCH modelleri icin esit tahmin tutarliliginin 8 farkli gelecek tahmininden 6'si icin reddedilememekte iken; 2'si icin ise SVR-GARCH modelinin daha basarili bulundugu sonuclarina varilmaktadir. The study aims to augment commonly applied volatility models with support vector machines and neural networks. The proposed modeling strategy benefits from neural network based GARCH models of Donaldson and Kamstra (1997) and SVR-GARCH models discussed by Ou and Wang (2010) and Perez-Cruz (2003). Models are evaluated for in-sample and out-of-sample forecasting of daily returns in Istanbul ISE100 stock index. Results suggest that volatility clustering, asymmetry and nonlinearity characteristics are modeled more effectively with SVR-GARCH and MLP-GARCH models compared to the basic GARCH models. In terms of out-of-sample forecasting capabilities, Diebold-Mariano tests show that equal forecast accuracy could not be rejected for most of the horizons for the MLP-GARCH and SVR-GARCH models. On the other hand, SVR-GARCH is found to possess better forecast accuracy in 2 out of 8 forecast competitions.
本文英文版见:http://ssrn.com/abstract=2227747Calisma,旨在通过分析用支持向量机和人工神经网络改进的模型,检验基本 GARCH 模型在提高 GARCH 模型预测性能方面是否成功。基于 ANN 结构的 NN-GARCH 模型是在 Donaldson 和 Kamstra(1997 年)以及 Bildirici 和 Ersin(2009 年)的基础上建立的,该模型基于 NN-GARCH 架构并使用不同的学习算法建模,而 SVR-GARCH 模型则是在 Ou 和 Wang(2010 年)以及 Perez-Cruz (2003 年)的基础上建立的。我们从预测成功率的角度对这些模型进行了评估。在此背景下,GARCH、SVR-GARCH 和 MLP-GARCH 模型被用作 ISE-100 指数日收益建模的基础,并从样本内和样本外预测性能的角度进行了评估。实证结果表明,除了leptokurtic离散性之外,SVR-GARCH 模型和 MLP-GARCH 模型还可以模拟序列中的非对称性和非线性,而且在不同误差标准和相同预测一致性检验下,基本 GARCH 模型的预测结果优于基本 GARCH 模型;在样本外预测性能方面,基于 Diebold Mariano 检验,得出 SVR-GARCH 模型和 MLP-GARCH 模型在 8 种不同的未来预测中,有 6 种预测的同等预测一致性不能被拒绝,而 SVR-GARCH 模型在其中 2 种预测中更为成功。本研究旨在利用支持向量机和神经网络增强常用的波动率模型。建议的建模策略得益于 Donaldson 和 Kamstra(1997 年)基于神经网络的 GARCH 模型,以及 Ou 和 Wang(2010 年)以及 Perez-Cruz(2003 年)讨论的 SVR-GARCH 模型。结果表明,与基本 GARCH 模型相比,SVR-GARCH 模型和 MLP-GARCH 模型能更有效地模拟波动集群、非对称性和非线性特征。在样本外预测能力方面,Diebold-Mariano 检验表明,MLP-GARCH 模型和 SVR-GARCH 模型在大多数时间跨度上的预测准确性相同,这一点无法被否定。另一方面,SVR-GARCH 在 8 项预测竞赛中的 2 项中拥有更好的预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信