A Study of Various Text Augmentation Techniques for Relation Classification in Free Text

Praveen Kumar Badimala Giridhara, Chinmaya Mishra, Reddy Kumar Modam Venkataramana, S. S. Bukhari, A. Dengel
{"title":"A Study of Various Text Augmentation Techniques for Relation Classification in Free Text","authors":"Praveen Kumar Badimala Giridhara, Chinmaya Mishra, Reddy Kumar Modam Venkataramana, S. S. Bukhari, A. Dengel","doi":"10.5220/0007311003600367","DOIUrl":null,"url":null,"abstract":"Data augmentation techniques have been widely used in visual recognition tasks as it is easy to generate new data by simple and straight forward image transformations. However, when it comes to text data augmentations, it is difficult to find appropriate transformation techniques which also preserve the contextual and grammatical structure of language texts. In this paper, we explore various text data augmentation techniques in text space and word embedding space. We study the effect of various augmented datasets on the efficiency of different deep learning models for relation classification in text.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007311003600367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Data augmentation techniques have been widely used in visual recognition tasks as it is easy to generate new data by simple and straight forward image transformations. However, when it comes to text data augmentations, it is difficult to find appropriate transformation techniques which also preserve the contextual and grammatical structure of language texts. In this paper, we explore various text data augmentation techniques in text space and word embedding space. We study the effect of various augmented datasets on the efficiency of different deep learning models for relation classification in text.
自由文本中关系分类的各种文本增强技术研究
数据增强技术在视觉识别任务中得到了广泛的应用,因为它可以通过简单直接的图像变换来生成新的数据。然而,当涉及到文本数据增强时,很难找到适当的转换技术,同时保留语言文本的上下文和语法结构。在本文中,我们探索了文本空间和词嵌入空间中的各种文本数据增强技术。我们研究了各种增强数据集对文本中关系分类的不同深度学习模型效率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信