A two-stage fingerprint classification system

R. Cappelli, D. Maio, D. Maltoni, L. Nanni
{"title":"A two-stage fingerprint classification system","authors":"R. Cappelli, D. Maio, D. Maltoni, L. Nanni","doi":"10.1145/982507.982525","DOIUrl":null,"url":null,"abstract":"In this paper we describe a fingerprint classification system based on a two-stage sequential architecture: an MKL-based classifier is first used to select the two-most-likely classes and then a second classifier (specifically trained to discriminate between the two classes) is then adopted for the final decision. The experimentation performed on NIST Special Database 4, which is one of the most important benchmarks in this area, shows that the new approach yields an error rate lower than previously published in the literature. In particular, the error rate is 4.8% and 3.7% for the five-class problem and four-class problem, respectively.","PeriodicalId":228135,"journal":{"name":"Workshop Brasileira em Métodos Agile / Brazilian Workshop on Agile Methods","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop Brasileira em Métodos Agile / Brazilian Workshop on Agile Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/982507.982525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

In this paper we describe a fingerprint classification system based on a two-stage sequential architecture: an MKL-based classifier is first used to select the two-most-likely classes and then a second classifier (specifically trained to discriminate between the two classes) is then adopted for the final decision. The experimentation performed on NIST Special Database 4, which is one of the most important benchmarks in this area, shows that the new approach yields an error rate lower than previously published in the literature. In particular, the error rate is 4.8% and 3.7% for the five-class problem and four-class problem, respectively.
两阶段指纹分类系统
在本文中,我们描述了一个基于两阶段顺序架构的指纹分类系统:首先使用基于mkl的分类器来选择两个最可能的类别,然后使用第二个分类器(专门训练以区分这两个类别)进行最终决策。在NIST Special Database 4(该领域最重要的基准之一)上进行的实验表明,新方法产生的错误率低于先前发表在文献中的错误率。其中,五类问题和四类问题的错误率分别为4.8%和3.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信