Modified backpropagation algorithm with adaptive learning rate based on differential errors and differential functional constraints

T. Kathirvalavakumar, S. J. Subavathi
{"title":"Modified backpropagation algorithm with adaptive learning rate based on differential errors and differential functional constraints","authors":"T. Kathirvalavakumar, S. J. Subavathi","doi":"10.1109/ICPRIME.2012.6208288","DOIUrl":null,"url":null,"abstract":"In this paper, a new adaptive learning rate algorithm to train a single hidden layer neural network is proposed. The adaptive learning rate is derived by differentiating linear and nonlinear errors and functional constraints weight decay term at hidden layer and penalty term at output layer. Since the adaptive learning rate calculation involves first order derivative of linear and nonlinear errors and second order derivatives of functional constraints, the proposed algorithm converges quickly. Simulation results show the advantages of proposed algorithm.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a new adaptive learning rate algorithm to train a single hidden layer neural network is proposed. The adaptive learning rate is derived by differentiating linear and nonlinear errors and functional constraints weight decay term at hidden layer and penalty term at output layer. Since the adaptive learning rate calculation involves first order derivative of linear and nonlinear errors and second order derivatives of functional constraints, the proposed algorithm converges quickly. Simulation results show the advantages of proposed algorithm.
基于微分误差和微分函数约束的自适应学习率改进反向传播算法
本文提出了一种新的自适应学习率算法来训练单隐层神经网络。通过对线性误差和非线性误差以及隐层的函数约束权衰减项和输出层的惩罚项进行微分,推导出自适应学习率。由于自适应学习率计算涉及线性和非线性误差的一阶导数和函数约束的二阶导数,因此该算法收敛速度快。仿真结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信