Video Denoising using Temporal Coherency of Video Frames and Sparse Representation

Azadeh Torkashvand, A. Behrad
{"title":"Video Denoising using Temporal Coherency of Video Frames and Sparse Representation","authors":"Azadeh Torkashvand, A. Behrad","doi":"10.1109/MVIP53647.2022.9738770","DOIUrl":null,"url":null,"abstract":"Sparse representation based on dictionary learning has been widely used in many applications over the past decade. In this article, a new method is proposed for removing noise from video images using sparse representation and a trained dictionary. To enhance the noise removal capability, the proposed method is combined with a block matching algorithm to take the advantage of the temporal dependency of video images and increase the quality of the output images. The simulations performed on different test data show the appropriate response of the proposed algorithm in terms of video image output quality.","PeriodicalId":184716,"journal":{"name":"2022 International Conference on Machine Vision and Image Processing (MVIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP53647.2022.9738770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse representation based on dictionary learning has been widely used in many applications over the past decade. In this article, a new method is proposed for removing noise from video images using sparse representation and a trained dictionary. To enhance the noise removal capability, the proposed method is combined with a block matching algorithm to take the advantage of the temporal dependency of video images and increase the quality of the output images. The simulations performed on different test data show the appropriate response of the proposed algorithm in terms of video image output quality.
基于视频帧时间相干和稀疏表示的视频去噪
在过去的十年里,基于字典学习的稀疏表示在许多应用中得到了广泛的应用。本文提出了一种利用稀疏表示和训练字典来去除视频图像噪声的新方法。为了增强去噪能力,将该方法与块匹配算法相结合,利用视频图像的时间依赖性,提高输出图像的质量。在不同的测试数据上进行了仿真,结果表明该算法对视频图像输出质量的响应是适当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信