Enes Eken, Ismail Bayram, Yaojun Zhang, Bonan Yan, Wenqing Wu, Hai Helen Li, Yiran Chen
{"title":"Spin-hall assisted STT-RAM design and discussion","authors":"Enes Eken, Ismail Bayram, Yaojun Zhang, Bonan Yan, Wenqing Wu, Hai Helen Li, Yiran Chen","doi":"10.1145/2947357.2947360","DOIUrl":null,"url":null,"abstract":"In recent years, Spin-Transfer Torque Random Access Memory (STT-RAM) has attracted significant attentions from both industry and academia due to its attractive attributes such as small cell area and non-volatility. However, long switching time and large programming energy of Magnetic Tunneling Junction (MTJ) continue being major challenges in STT-RAM designs. In order to overcome this problem, a Spin-Hall Effect (SHE) assisted STT-RAM structure (SHE-RAM) has been recently invented. In this work, we investigate two possible SHE-RAM designs from the aspects of two different write access operations, namely, High Density SHE-RAM and Disturbance Free SHE-RAM, respectively. In High Density SHE-RAM, SHE current is shared by the entire bit line. Such a structure removes the SHE control transistor from each SHE-RAM cell and hence, substantially reduces the memory cell area. In Disturbance Free SHE-RAM, one memory cell contains two transistors to remove the disturbance to the unselected bits and eliminate the possible erroneous flipping of the bits.","PeriodicalId":331624,"journal":{"name":"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2947357.2947360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In recent years, Spin-Transfer Torque Random Access Memory (STT-RAM) has attracted significant attentions from both industry and academia due to its attractive attributes such as small cell area and non-volatility. However, long switching time and large programming energy of Magnetic Tunneling Junction (MTJ) continue being major challenges in STT-RAM designs. In order to overcome this problem, a Spin-Hall Effect (SHE) assisted STT-RAM structure (SHE-RAM) has been recently invented. In this work, we investigate two possible SHE-RAM designs from the aspects of two different write access operations, namely, High Density SHE-RAM and Disturbance Free SHE-RAM, respectively. In High Density SHE-RAM, SHE current is shared by the entire bit line. Such a structure removes the SHE control transistor from each SHE-RAM cell and hence, substantially reduces the memory cell area. In Disturbance Free SHE-RAM, one memory cell contains two transistors to remove the disturbance to the unselected bits and eliminate the possible erroneous flipping of the bits.