Improving Hyperspectral Image Classification using Data Augmentation of Correlated Color Temperature

Tajul Miftahushudur, O. Heriana, Salita Ulitia Prini
{"title":"Improving Hyperspectral Image Classification using Data Augmentation of Correlated Color Temperature","authors":"Tajul Miftahushudur, O. Heriana, Salita Ulitia Prini","doi":"10.1109/ICRAMET47453.2019.8980420","DOIUrl":null,"url":null,"abstract":"Machines learning has a huge influence on object classification in the hyperspectral image. In order to obtain a satisfying result, machine learning needs large training data. However, a huge labelled sample for training purpose is hard to obtain. Data Augmentation (DA) is a strategy that can increase the quantity of training data and effective to overcome the limited training samples problem. On the other hand, color is one of the most important features that commonly used in object recognizing. In this study, we first explore how radiance manipulation in hyperspectral images using Correlated Color Temperature (CCT) can be used as the DA. Finally, using an ensemble method and a switching method to optimize the classification results. The experimental results demonstrate that the proposed technique can improve classification performance better than the recent feature selection technique.","PeriodicalId":273233,"journal":{"name":"2019 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET47453.2019.8980420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machines learning has a huge influence on object classification in the hyperspectral image. In order to obtain a satisfying result, machine learning needs large training data. However, a huge labelled sample for training purpose is hard to obtain. Data Augmentation (DA) is a strategy that can increase the quantity of training data and effective to overcome the limited training samples problem. On the other hand, color is one of the most important features that commonly used in object recognizing. In this study, we first explore how radiance manipulation in hyperspectral images using Correlated Color Temperature (CCT) can be used as the DA. Finally, using an ensemble method and a switching method to optimize the classification results. The experimental results demonstrate that the proposed technique can improve classification performance better than the recent feature selection technique.
利用相关色温数据增强改进高光谱图像分类
机器学习对高光谱图像中的目标分类有着巨大的影响。为了获得满意的结果,机器学习需要大量的训练数据。然而,用于训练目的的巨大标记样本很难获得。数据增强(Data Augmentation, DA)是一种能够增加训练数据量,有效克服训练样本有限问题的策略。另一方面,颜色是物体识别中常用的最重要的特征之一。在本研究中,我们首先探讨了如何利用相关色温(CCT)对高光谱图像进行亮度处理。最后,采用集成方法和切换方法对分类结果进行优化。实验结果表明,该方法比现有的特征选择方法能更好地提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信