AutoEPRS-20: Extracting Business Process Redesign Suggestions from Natural Language Text

Amina Mustansir, K. Shahzad, M. K. Malik
{"title":"AutoEPRS-20: Extracting Business Process Redesign Suggestions from Natural Language Text","authors":"Amina Mustansir, K. Shahzad, M. K. Malik","doi":"10.1145/3417113.3423374","DOIUrl":null,"url":null,"abstract":"In this paper, we have defined an NLP task, for the automatic extraction of business process redesign suggestions from natural language text. In particular, we have employed a systematic protocol to define the task, which is composed of three elements and three sub-tasks. The elements are: a) a real-world process model, b) actual feedback in natural language text, and c) three-level classification of the feedback. The task is composed of two binary and one multi-class classification sub-tasks. The evaluation of the AutoEPRS-20 task is performed using six traditional supervised learning techniques. The results show that the third sub-task is more challenging that the two binary sub-tasks.","PeriodicalId":110590,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3417113.3423374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we have defined an NLP task, for the automatic extraction of business process redesign suggestions from natural language text. In particular, we have employed a systematic protocol to define the task, which is composed of three elements and three sub-tasks. The elements are: a) a real-world process model, b) actual feedback in natural language text, and c) three-level classification of the feedback. The task is composed of two binary and one multi-class classification sub-tasks. The evaluation of the AutoEPRS-20 task is performed using six traditional supervised learning techniques. The results show that the third sub-task is more challenging that the two binary sub-tasks.
AutoEPRS-20:从自然语言文本中提取业务流程重新设计建议
在本文中,我们定义了一个NLP任务,用于从自然语言文本中自动提取业务流程重新设计建议。特别地,我们采用了一个系统的协议来定义任务,它由三个元素和三个子任务组成。这些元素是:a)真实世界的过程模型,b)自然语言文本中的实际反馈,以及c)反馈的三级分类。该任务由两个二元分类子任务和一个多类分类子任务组成。对AutoEPRS-20任务的评估使用了六种传统的监督学习技术。结果表明,第三个子任务比两个二元子任务更具挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信