{"title":"Safe Walking in VR","authors":"Maurício Sousa, Daniel Mendes, Joaquim Jorge","doi":"10.1145/3359997.3365737","DOIUrl":null,"url":null,"abstract":"Common natural walking techniques for navigating in virtual environments feature constraints that make it difficult to use those methods in cramped home environments. Indeed, natural walking requires unobstructed and open space, to allow users to roam around without fear of stumbling on obstacles while immersed in a virtual world. In this work, we propose a new virtual locomotion technique, CWIP-AVR, that allows people to take advantage of the available physical space and empowers them to use natural walking to navigate in the virtual world. To inform users about real world hazards our approach uses augmented virtual reality visual indicators. A user evaluation suggests that CWIP-AVR allows people to navigate safely, while switching between locomotion modes flexibly and maintaining a adequate degree of immersion.","PeriodicalId":448139,"journal":{"name":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359997.3365737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Common natural walking techniques for navigating in virtual environments feature constraints that make it difficult to use those methods in cramped home environments. Indeed, natural walking requires unobstructed and open space, to allow users to roam around without fear of stumbling on obstacles while immersed in a virtual world. In this work, we propose a new virtual locomotion technique, CWIP-AVR, that allows people to take advantage of the available physical space and empowers them to use natural walking to navigate in the virtual world. To inform users about real world hazards our approach uses augmented virtual reality visual indicators. A user evaluation suggests that CWIP-AVR allows people to navigate safely, while switching between locomotion modes flexibly and maintaining a adequate degree of immersion.