{"title":"A Comparative Study on Harvesting Plan Predicting Insurance with Two-Stage Stochastic Analysis","authors":"Hashnayne Ahmed, Shek Ahmed","doi":"10.11648/J.IJDST.20190504.12","DOIUrl":null,"url":null,"abstract":"The exception of considering uncertainty could be very detrimental to the outcomes of any systems or phenomena in the long run. Stochastic Process describes the way of considering uncertainty in different sectors of our life. We use Linear Programming for planning at its best. It is also considered as the best optimization technique for taking decisions or planning. But this planning tool disappoints us in optimization for unexpected risk or stochasticity. Consideration of stochasticity for a farmer to devote land on different crops for harvesting could be some insurance for the farmer with the best possible outcomes. Stochastic Programming studies these types of optimization techniques with risk consideration for better decisions in every step of our life. In this paper, we described the early starting of uncertainty calculation or stochastic approach and the evolution of stochastic optimization fields. Stochastic optimization is rather important in the sense of uncertainty calculation than sensitivity analysis and works through data gained from experience. We also present a stochastic model with some uncertainty issues in harvesting to make better outcomes. Some application areas are also discussed.","PeriodicalId":281025,"journal":{"name":"International Journal on Data Science and Technology","volume":"29 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Data Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJDST.20190504.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The exception of considering uncertainty could be very detrimental to the outcomes of any systems or phenomena in the long run. Stochastic Process describes the way of considering uncertainty in different sectors of our life. We use Linear Programming for planning at its best. It is also considered as the best optimization technique for taking decisions or planning. But this planning tool disappoints us in optimization for unexpected risk or stochasticity. Consideration of stochasticity for a farmer to devote land on different crops for harvesting could be some insurance for the farmer with the best possible outcomes. Stochastic Programming studies these types of optimization techniques with risk consideration for better decisions in every step of our life. In this paper, we described the early starting of uncertainty calculation or stochastic approach and the evolution of stochastic optimization fields. Stochastic optimization is rather important in the sense of uncertainty calculation than sensitivity analysis and works through data gained from experience. We also present a stochastic model with some uncertainty issues in harvesting to make better outcomes. Some application areas are also discussed.