Simone Giorgioni, Marcello Politi, Samir Salman, R. Basili, D. Croce
{"title":"UNITOR @ Sardistance2020: Combining Transformer-based Architectures and Transfer Learning for Robust Stance Detection","authors":"Simone Giorgioni, Marcello Politi, Samir Salman, R. Basili, D. Croce","doi":"10.4000/BOOKS.AACCADEMIA.7092","DOIUrl":null,"url":null,"abstract":"English. This paper describes the UNITOR system that participated to the Stance Detection in Italian tweets (Sardistance) task within the context of EVALITA 2020. UNITOR implements a transformer-based architecture whose accuracy is improved by adopting a Transfer Learning technique. In particular, this work investigates the possible contribution of three auxiliary tasks related to Stance Detection, i.e., Sentiment Detection, Hate Speech Detection and Irony Detection. Moreover, UNITOR relies on an additional dataset automatically downloaded and labeled through distant supervision. The UNITOR system ranked first in Task A within the competition. This confirms the effectiveness of Transformer-based architectures and the beneficial impact of the adopted strategies. Italiano. Questo lavoro descrive UNITOR, uno dei sistemi partecipanti allo Stance Detection in Italian tweet (SardiStance) task. UNITOR implementa un’architettura neurale basata su Transformer, la cui accuratezza viene migliorata applicando un metodo di Transfer Learning, che sfrutta le informazioni di tre task ausiliari, ovvero Sentiment Detection, Hate Speech Detection e Irony Detection. Inoltre, l’addestramento di UNITOR puó contare su un insieme di dati scaricati ed etichettati automaticamente applicando un semplice metodo di Distant Supervision. Il sistema si é classificato al primo posto nella competizione, confermando l’efficacia delle architetture basate su Transformer e il contributo delle strategie","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
English. This paper describes the UNITOR system that participated to the Stance Detection in Italian tweets (Sardistance) task within the context of EVALITA 2020. UNITOR implements a transformer-based architecture whose accuracy is improved by adopting a Transfer Learning technique. In particular, this work investigates the possible contribution of three auxiliary tasks related to Stance Detection, i.e., Sentiment Detection, Hate Speech Detection and Irony Detection. Moreover, UNITOR relies on an additional dataset automatically downloaded and labeled through distant supervision. The UNITOR system ranked first in Task A within the competition. This confirms the effectiveness of Transformer-based architectures and the beneficial impact of the adopted strategies. Italiano. Questo lavoro descrive UNITOR, uno dei sistemi partecipanti allo Stance Detection in Italian tweet (SardiStance) task. UNITOR implementa un’architettura neurale basata su Transformer, la cui accuratezza viene migliorata applicando un metodo di Transfer Learning, che sfrutta le informazioni di tre task ausiliari, ovvero Sentiment Detection, Hate Speech Detection e Irony Detection. Inoltre, l’addestramento di UNITOR puó contare su un insieme di dati scaricati ed etichettati automaticamente applicando un semplice metodo di Distant Supervision. Il sistema si é classificato al primo posto nella competizione, confermando l’efficacia delle architetture basate su Transformer e il contributo delle strategie