A Compressed Air Network Energy-Efficient Hierarchical Unit Commitment and Control

Daniele Ravasio, Lorenzo Tuissi, S. Spinelli, A. Ballarino
{"title":"A Compressed Air Network Energy-Efficient Hierarchical Unit Commitment and Control","authors":"Daniele Ravasio, Lorenzo Tuissi, S. Spinelli, A. Ballarino","doi":"10.1109/ICCAE56788.2023.10111312","DOIUrl":null,"url":null,"abstract":"A two-layer hierarchical control scheme entirely based on Model Predictive Control (MPC) is proposed for the control of a compressed air network. The high-level exploits the air demand prediction and - through a hybrid MPC - defines the optimal unit commitment and compressor operating points, minimizing the network energy consumption over a long time horizon. At the low-level, compressors are controlled independently to track the references received from the upper layer in the presence of actuation constraints. The proposed control solution can be applied to different network configurations. Simulation results prove the capabilities of the strategy when compared to traditional techniques used nowadays in industry.","PeriodicalId":406112,"journal":{"name":"2023 15th International Conference on Computer and Automation Engineering (ICCAE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Computer and Automation Engineering (ICCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAE56788.2023.10111312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A two-layer hierarchical control scheme entirely based on Model Predictive Control (MPC) is proposed for the control of a compressed air network. The high-level exploits the air demand prediction and - through a hybrid MPC - defines the optimal unit commitment and compressor operating points, minimizing the network energy consumption over a long time horizon. At the low-level, compressors are controlled independently to track the references received from the upper layer in the presence of actuation constraints. The proposed control solution can be applied to different network configurations. Simulation results prove the capabilities of the strategy when compared to traditional techniques used nowadays in industry.
压缩空气网络节能分层单元承诺与控制
针对压缩空气网络的控制问题,提出了一种完全基于模型预测控制(MPC)的两层分层控制方案。高层利用空气需求预测,并通过混合MPC定义最佳的机组投入和压缩机工作点,在很长一段时间内最大限度地减少网络能耗。在底层,压缩机被独立控制,以在存在驱动约束的情况下跟踪从上层接收到的引用。所提出的控制方案可适用于不同的网络配置。仿真结果证明了该策略与目前工业上使用的传统技术相比的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信