A current-mode CMOS/memristor hybrid implementation of an extreme learning machine

Cory E. Merkel, D. Kudithipudi
{"title":"A current-mode CMOS/memristor hybrid implementation of an extreme learning machine","authors":"Cory E. Merkel, D. Kudithipudi","doi":"10.1145/2591513.2591572","DOIUrl":null,"url":null,"abstract":"In this work, we propose a current-mode CMOS/memristor hybrid implementation of an extreme learning machine (ELM) architecture. We present novel circuit designs for linear, sigmoid,and threshold neuronal activation functions, as well as memristor-based bipolar synaptic weighting. In addition, this work proposes a stochastic version of the least-mean-squares (LMS) training algorithm for adapting the weights between the ELM's hidden and output layers. We simulated our top-level ELM architecture using Cadence AMS Designer with 45 nm CMOS models and an empirical piecewise linear memristor model based on experimental data from an HfOx device. With 10 hidden node neurons, the ELM was able to learn a 2-input XOR function after 150 training epochs.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this work, we propose a current-mode CMOS/memristor hybrid implementation of an extreme learning machine (ELM) architecture. We present novel circuit designs for linear, sigmoid,and threshold neuronal activation functions, as well as memristor-based bipolar synaptic weighting. In addition, this work proposes a stochastic version of the least-mean-squares (LMS) training algorithm for adapting the weights between the ELM's hidden and output layers. We simulated our top-level ELM architecture using Cadence AMS Designer with 45 nm CMOS models and an empirical piecewise linear memristor model based on experimental data from an HfOx device. With 10 hidden node neurons, the ELM was able to learn a 2-input XOR function after 150 training epochs.
一种电流模式CMOS/忆阻器混合实现的极限学习机
在这项工作中,我们提出了一种电流模式CMOS/忆阻器混合实现的极限学习机(ELM)架构。我们提出了线性、s型和阈值神经元激活函数的新电路设计,以及基于记忆电阻器的双极突触加权。此外,这项工作提出了一种随机版本的最小均方(LMS)训练算法,用于适应ELM的隐藏层和输出层之间的权重。我们使用Cadence AMS Designer模拟了我们的顶层ELM架构,采用45纳米CMOS模型和基于HfOx器件实验数据的经验分段线性忆阻器模型。通过10个隐藏节点神经元,ELM能够在150次训练后学习一个2输入异或函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信