On-line Local Mean Decomposition and its application to ECG signal denoising

Hsea-Ching Hsueh, Shao-Yi Chien
{"title":"On-line Local Mean Decomposition and its application to ECG signal denoising","authors":"Hsea-Ching Hsueh, Shao-Yi Chien","doi":"10.1109/BioCAS.2014.6981634","DOIUrl":null,"url":null,"abstract":"Local Mean Decomposition (LMD) has long been proven as an effective method for the analysis of non-linear and non-stationary time series. In this work, an on-line version of LMD, called extended Sliding Local Mean Decomposition (eSLMD), is proposed. The property of eSLMD is examined through numerical simulations, and the performance is evaluated through the ECG noise removal with the test signal obtained from MIT-BIH arrhythmia ECG database. The results show that the proposed eSLMD has better decomposition performance than conventional LMD, and is potentially well suited for on-line and real-time biomedical applications.","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Local Mean Decomposition (LMD) has long been proven as an effective method for the analysis of non-linear and non-stationary time series. In this work, an on-line version of LMD, called extended Sliding Local Mean Decomposition (eSLMD), is proposed. The property of eSLMD is examined through numerical simulations, and the performance is evaluated through the ECG noise removal with the test signal obtained from MIT-BIH arrhythmia ECG database. The results show that the proposed eSLMD has better decomposition performance than conventional LMD, and is potentially well suited for on-line and real-time biomedical applications.
在线局部均值分解及其在心电信号去噪中的应用
局部均值分解(LMD)是一种分析非线性非平稳时间序列的有效方法。在这项工作中,提出了LMD的在线版本,称为扩展滑动局部平均分解(eSLMD)。通过数值模拟检验了eSLMD的性能,并利用MIT-BIH心律失常心电数据库中的测试信号对eSLMD进行了心电噪声去除,评价了eSLMD的性能。结果表明,所提出的eSLMD比传统的LMD具有更好的分解性能,可以很好地用于在线和实时生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信