Self-organizing maps with a single neuron

George M. Georgiou, K. Voigt
{"title":"Self-organizing maps with a single neuron","authors":"George M. Georgiou, K. Voigt","doi":"10.1109/IJCNN.2013.6706843","DOIUrl":null,"url":null,"abstract":"Self-organization is explored with a single complex-valued quadratic neuron. The output is the complex plane. A virtual grid is used to provide desired outputs for each input. Experiments have shown that training is fast. A quadratic neuron with the new training algorithm has been shown to have clustering properties. Data that are in a cluster in the input space tend to cluster on the complex plane. The speed of training and operation allows for efficient high-dimensional data exploration and for real-time critical applications.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Self-organization is explored with a single complex-valued quadratic neuron. The output is the complex plane. A virtual grid is used to provide desired outputs for each input. Experiments have shown that training is fast. A quadratic neuron with the new training algorithm has been shown to have clustering properties. Data that are in a cluster in the input space tend to cluster on the complex plane. The speed of training and operation allows for efficient high-dimensional data exploration and for real-time critical applications.
具有单个神经元的自组织地图
研究了单个复值二次神经元的自组织问题。输出是复平面。虚拟网格用于为每个输入提供所需的输出。实验表明,训练是快速的。使用新训练算法的二次型神经元已被证明具有聚类特性。在输入空间中的聚类数据倾向于在复平面上聚类。训练和操作的速度允许高效的高维数据探索和实时关键应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信