Optic disk detection and segmentation of retinal images using an evolution strategy on GPU

German Sanchez Torres, J. Taborda
{"title":"Optic disk detection and segmentation of retinal images using an evolution strategy on GPU","authors":"German Sanchez Torres, J. Taborda","doi":"10.1109/STSIVA.2013.6644904","DOIUrl":null,"url":null,"abstract":"In this paper we show an optic disk (OD) detection and segmentation approach based on evolution strategy (ES) implemented on GPU using CUDA (Compute Unified Device Architecture). The approach has two main steps: Coarse detection and contour edges refinement. Coarse detection estimate a position approximation using an ES which bright pixels amount and the vascular structure edge pixels are considers in its objective function. The contour edge refinement uses a geometrical approach for circle deformation in order to adjust the edge circle with OD edges. For this, the pixel with the largest intensity value variation along a normal line is considered. The proposed method was evaluated using the STARED and DIAREDB public repository, processing normal and disease patient states retinal images. In the experimental results we show that the computational time for optic disk detection task has a speedup factor of 5x and 7x compared to an implementation on a mainstream CPU and identifies the optic disk position with an accuracy of 96%.","PeriodicalId":359994,"journal":{"name":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2013.6644904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we show an optic disk (OD) detection and segmentation approach based on evolution strategy (ES) implemented on GPU using CUDA (Compute Unified Device Architecture). The approach has two main steps: Coarse detection and contour edges refinement. Coarse detection estimate a position approximation using an ES which bright pixels amount and the vascular structure edge pixels are considers in its objective function. The contour edge refinement uses a geometrical approach for circle deformation in order to adjust the edge circle with OD edges. For this, the pixel with the largest intensity value variation along a normal line is considered. The proposed method was evaluated using the STARED and DIAREDB public repository, processing normal and disease patient states retinal images. In the experimental results we show that the computational time for optic disk detection task has a speedup factor of 5x and 7x compared to an implementation on a mainstream CPU and identifies the optic disk position with an accuracy of 96%.
基于GPU进化策略的视盘检测与视网膜图像分割
在本文中,我们展示了一种基于进化策略(ES)的视盘(OD)检测和分割方法,该方法使用CUDA(计算统一设备架构)在GPU上实现。该方法主要分为两个步骤:粗检测和轮廓边缘细化。粗检测采用以明亮像素和维管结构边缘像素为目标函数的ES进行位置逼近。轮廓边缘细化采用几何方法对圆进行变形,以调整有外径边的边缘圆。为此,考虑沿法线强度值变化最大的像素。使用stare和DIAREDB公共存储库,处理正常和疾病患者状态的视网膜图像,对该方法进行了评估。实验结果表明,与在主流CPU上实现相比,光盘检测任务的计算时间加快了5倍和7倍,并以96%的准确率识别出了光盘位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信