{"title":"Semi-classical Limit of Chaos and Quantum Noise in Second Harmonic Generation","authors":"M. Dörfle, R. Graham","doi":"10.1364/idlnos.1985.thc6","DOIUrl":null,"url":null,"abstract":"Second harmonic generation and subharmonic generation in a cavity are described by the usual master equation (1) for the statistical operator of the system of two modes (fundamental and second harmonic). The master equation is equivalent to a partial differential equation for the Wigner function which is a generalized Fokker-Planck equation involving partial derivatives of the first, second and third order (2). In the semi-classical limit the third order derivatives are negligible and the Wigner distribution satisfies the Fokker-Planck equation equivalent to the Langevin equation with the formally classical Gaussian white noise ξ1, ξ2 with the only non-vanishing correlation coefficients β1, β2 are the mode amplitudes (normalized to photon numbers), g is the coupling constant, Δ1, 2 the frequency mismatch, x is the damping rate, Fp the amplitude of the pump field.","PeriodicalId":262701,"journal":{"name":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/idlnos.1985.thc6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Second harmonic generation and subharmonic generation in a cavity are described by the usual master equation (1) for the statistical operator of the system of two modes (fundamental and second harmonic). The master equation is equivalent to a partial differential equation for the Wigner function which is a generalized Fokker-Planck equation involving partial derivatives of the first, second and third order (2). In the semi-classical limit the third order derivatives are negligible and the Wigner distribution satisfies the Fokker-Planck equation equivalent to the Langevin equation with the formally classical Gaussian white noise ξ1, ξ2 with the only non-vanishing correlation coefficients β1, β2 are the mode amplitudes (normalized to photon numbers), g is the coupling constant, Δ1, 2 the frequency mismatch, x is the damping rate, Fp the amplitude of the pump field.