R. Aleliunas, R. Karp, R. Lipton, L. Lovász, C. Rackoff
{"title":"Random walks, universal traversal sequences, and the complexity of maze problems","authors":"R. Aleliunas, R. Karp, R. Lipton, L. Lovász, C. Rackoff","doi":"10.1109/SFCS.1979.34","DOIUrl":null,"url":null,"abstract":"It is well known that the reachability problem for directed graphs is logspace-complete for the complexity class NSPACE(log n) , and thus holds the key to the open question of whether DSPACE(logn)= NSPACE(logn) ([3,4,5,6]). Here as usual OSPACE(logn) is the class of languages that are accepted in logn space by deterministic Turing Ma chi nes, wh i 1eNSPACE( log n) i s the c1ass 0 f 1anguages that are accepted in log n space by nondeterministic ones. The reachability problem for undirected graphs has also been considered ([5]), but it has remained an open question whether undirected graph reachability is logspace-complete for NSPACE(logn). Here we derive results suggesting that the undirected reachability problem is structurally different from, and easier than, the directed version. These results are an affirmative answer to a question of S. Cook.","PeriodicalId":311166,"journal":{"name":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"690","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1979.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 690
Abstract
It is well known that the reachability problem for directed graphs is logspace-complete for the complexity class NSPACE(log n) , and thus holds the key to the open question of whether DSPACE(logn)= NSPACE(logn) ([3,4,5,6]). Here as usual OSPACE(logn) is the class of languages that are accepted in logn space by deterministic Turing Ma chi nes, wh i 1eNSPACE( log n) i s the c1ass 0 f 1anguages that are accepted in log n space by nondeterministic ones. The reachability problem for undirected graphs has also been considered ([5]), but it has remained an open question whether undirected graph reachability is logspace-complete for NSPACE(logn). Here we derive results suggesting that the undirected reachability problem is structurally different from, and easier than, the directed version. These results are an affirmative answer to a question of S. Cook.