Collaborative Multi-Camera Surveillance with Automated Person Detection

T. Ahmedali, James J. Clark
{"title":"Collaborative Multi-Camera Surveillance with Automated Person Detection","authors":"T. Ahmedali, James J. Clark","doi":"10.1109/CRV.2006.21","DOIUrl":null,"url":null,"abstract":"This paper presents the groundwork for a distributed network of collaborating, intelligent surveillance cameras, implemented with low-cost embedded microprocessor camera modules. Each camera trains a person detection classifier using the Winnow algorithm for unsupervised, online learning. Training examples are automatically extracted and labelled, and the classifier is then used to locate person instances. To improve detection performance, multiple cameras with overlapping fields of view collaborate to confirm results. We present a novel, unsupervised calibration technique that allows each camera module to represent its spatial relationship with the rest. During runtime, cameras apply the learned spatial correlations to confirm each other’s detections. This technique implicitly handles non-overlapping regions that cannot be confirmed. Its computational efficiency is well-suited to real-time processing on our hardware.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper presents the groundwork for a distributed network of collaborating, intelligent surveillance cameras, implemented with low-cost embedded microprocessor camera modules. Each camera trains a person detection classifier using the Winnow algorithm for unsupervised, online learning. Training examples are automatically extracted and labelled, and the classifier is then used to locate person instances. To improve detection performance, multiple cameras with overlapping fields of view collaborate to confirm results. We present a novel, unsupervised calibration technique that allows each camera module to represent its spatial relationship with the rest. During runtime, cameras apply the learned spatial correlations to confirm each other’s detections. This technique implicitly handles non-overlapping regions that cannot be confirmed. Its computational efficiency is well-suited to real-time processing on our hardware.
协同多摄像头监控与自动人员检测
本文介绍了分布式协作智能监控摄像机网络的基础,该网络采用低成本嵌入式微处理器摄像机模块实现。每个摄像头使用Winnow算法训练一个人检测分类器,用于无监督的在线学习。训练样本被自动提取和标记,然后分类器被用来定位人的实例。为了提高检测性能,多个具有重叠视场的摄像机协作来确认结果。我们提出了一种新颖的无监督校准技术,允许每个相机模块表示其与其他模块的空间关系。在运行期间,摄像机应用学习到的空间相关性来确认彼此的检测。该技术隐式地处理无法确认的非重叠区域。它的计算效率非常适合我们硬件上的实时处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信