Improving Self-Adaptation by Combining MAPE-K, Machine and Deep Learning

Sabah Lecheheb, Soufiane Boulehouache, Said Brahimi
{"title":"Improving Self-Adaptation by Combining MAPE-K, Machine and Deep Learning","authors":"Sabah Lecheheb, Soufiane Boulehouache, Said Brahimi","doi":"10.1109/NTIC55069.2022.10100459","DOIUrl":null,"url":null,"abstract":"Monitoring, Analyzing, Planning, and Execution share knowledge and build a favorable approach in the form of a loop (MAPE-K). However, this proposed reference model is not efficient for large self-adaptations. Moreover, the failure of the analyzer component to keep up with the current expansion of data is one of the reasons that making the MAPE-K loop consumes a lot of time and resources. We suggest a hybrid learning dataflow design for the analysis phase that combines Machine and Deep Learning techniques to enhance the accuracy of the Analyzer component in less time.","PeriodicalId":403927,"journal":{"name":"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTIC55069.2022.10100459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring, Analyzing, Planning, and Execution share knowledge and build a favorable approach in the form of a loop (MAPE-K). However, this proposed reference model is not efficient for large self-adaptations. Moreover, the failure of the analyzer component to keep up with the current expansion of data is one of the reasons that making the MAPE-K loop consumes a lot of time and resources. We suggest a hybrid learning dataflow design for the analysis phase that combines Machine and Deep Learning techniques to enhance the accuracy of the Analyzer component in less time.
结合MAPE-K、机器和深度学习提高自适应能力
监测、分析、计划和执行共享知识,并以循环(MAPE-K)的形式建立一个有利的方法。然而,该参考模型对于大规模自适应并不有效。此外,分析器组件无法跟上当前数据扩展的速度是制作MAPE-K循环消耗大量时间和资源的原因之一。我们建议在分析阶段采用混合学习数据流设计,结合机器和深度学习技术,以在更短的时间内提高分析器组件的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信