Automated segmentation of erythrocytes from Giemsa-stained thin blood films

Pargorn Puttapirat, M. Phothisonothai, S. Tantisatirapong
{"title":"Automated segmentation of erythrocytes from Giemsa-stained thin blood films","authors":"Pargorn Puttapirat, M. Phothisonothai, S. Tantisatirapong","doi":"10.1109/KST.2016.7440503","DOIUrl":null,"url":null,"abstract":"This paper investigates automated segmentation of malaria parasites in images of Giemsa-stained thin blood film specimens. The Giemsa staining exhibits not only on the malaria parasites, but also platelets and artifacts. We aim to extract erythrocytes both normal and infected cells from other particles and separate overlapping cells. Our approach is compared with manual cell counting and existing program named CELLCOUNTER. Our processing framework provides 97% accuracy, which yields predominant detection more accurate than the CELLCOUNTER. The results also indicate high correlation between our proposed method and the manual cell counting.","PeriodicalId":350687,"journal":{"name":"2016 8th International Conference on Knowledge and Smart Technology (KST)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST.2016.7440503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper investigates automated segmentation of malaria parasites in images of Giemsa-stained thin blood film specimens. The Giemsa staining exhibits not only on the malaria parasites, but also platelets and artifacts. We aim to extract erythrocytes both normal and infected cells from other particles and separate overlapping cells. Our approach is compared with manual cell counting and existing program named CELLCOUNTER. Our processing framework provides 97% accuracy, which yields predominant detection more accurate than the CELLCOUNTER. The results also indicate high correlation between our proposed method and the manual cell counting.
吉姆萨染色血膜中红细胞的自动分割
本文研究了吉姆萨染色血膜标本图像中疟原虫的自动分割。吉姆萨染色不仅表现在疟疾寄生虫上,也表现在血小板和人工制品上。我们的目标是从其他颗粒中提取正常红细胞和感染细胞,并分离重叠细胞。我们的方法与人工细胞计数和现有的CELLCOUNTER程序进行了比较。我们的处理框架提供97%的准确率,这使得主要的检测比CELLCOUNTER更准确。结果还表明,我们提出的方法与人工细胞计数有很高的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信