Marion Poupard, Paul Best, Jan Schlüter, Jean-Marc Prevot, H. Symonds, P. Spong, H. Glotin
{"title":"Deep Learning for Ethoacoustics of Oreas on three years pentaphonie continuous recording at Orealab revealing tide, moon and diel effects","authors":"Marion Poupard, Paul Best, Jan Schlüter, Jean-Marc Prevot, H. Symonds, P. Spong, H. Glotin","doi":"10.1109/OCEANSE.2019.8867251","DOIUrl":null,"url":null,"abstract":"One of the best ways of studying animals that produce signals in underwater environments is to use passive acoustic monitoring (PAM). Acoustic monitoring is used to study marine mammals in oceans, and gives us information for understanding cetacean life, such as their behaviour, movement or reproduction. Automated analysis for captured sound is almost essential because of the large quantity of data. A deep learning approach was chosen for this task, since it has proven great efficiency for answering such problematics. This study focused on the orcas (Orcinus orca) of northern Vancouver Island, Canada, in collaboration with the NGO Orcalab which developed a multi-hydrophone recording station around Hanson Island to study orcas. The acoustic station is composed of 5 hydrophones and extends over 50 km2 of ocean. Since 2016 we are continuously streaming the hydrophone signals to our laboratory at Toulon, France, yielding nearly 50 TB of synchronous multichannel recordings. The objective for this research is to do a preliminary analysis of the collected data and demonstrate influence of environmental factors (tidal, moon phase and daily period) on the orcas' acoustic activities.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
One of the best ways of studying animals that produce signals in underwater environments is to use passive acoustic monitoring (PAM). Acoustic monitoring is used to study marine mammals in oceans, and gives us information for understanding cetacean life, such as their behaviour, movement or reproduction. Automated analysis for captured sound is almost essential because of the large quantity of data. A deep learning approach was chosen for this task, since it has proven great efficiency for answering such problematics. This study focused on the orcas (Orcinus orca) of northern Vancouver Island, Canada, in collaboration with the NGO Orcalab which developed a multi-hydrophone recording station around Hanson Island to study orcas. The acoustic station is composed of 5 hydrophones and extends over 50 km2 of ocean. Since 2016 we are continuously streaming the hydrophone signals to our laboratory at Toulon, France, yielding nearly 50 TB of synchronous multichannel recordings. The objective for this research is to do a preliminary analysis of the collected data and demonstrate influence of environmental factors (tidal, moon phase and daily period) on the orcas' acoustic activities.