A Multiple Objective PSO-Based Approach for Data Sanitization

Chun-Wei Lin, Yuyu Zhang, Chun-Hao Chen, J. Wu, Chien-Ming Chen, T. Hong
{"title":"A Multiple Objective PSO-Based Approach for Data Sanitization","authors":"Chun-Wei Lin, Yuyu Zhang, Chun-Hao Chen, J. Wu, Chien-Ming Chen, T. Hong","doi":"10.1109/TAAI.2018.00039","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-objective particle swarm optimization (MOPSO)-based framework is presented to find the multiple solutions rather than a single one. The presented grid-based algorithm is used to assign the probability of the non-dominated solution for next iteration. Based on the designed algorithm, it is unnecessary to pre-define the weights of the side effects for evaluation but the non-dominated solutions can be discovered as an alternative way for data sanitization. Extensive experiments are carried on two datasets to show that the designed grid-based algorithm achieves good performance than the traditional single-objective evolution algorithms.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"86 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a multi-objective particle swarm optimization (MOPSO)-based framework is presented to find the multiple solutions rather than a single one. The presented grid-based algorithm is used to assign the probability of the non-dominated solution for next iteration. Based on the designed algorithm, it is unnecessary to pre-define the weights of the side effects for evaluation but the non-dominated solutions can be discovered as an alternative way for data sanitization. Extensive experiments are carried on two datasets to show that the designed grid-based algorithm achieves good performance than the traditional single-objective evolution algorithms.
基于pso的多目标数据处理方法
本文提出了一种基于多目标粒子群优化(MOPSO)的框架来寻找问题的多个解,而不是单个解。提出的基于网格的算法用于分配下一次迭代的非支配解的概率。基于所设计的算法,不需要预先定义副作用的权重进行评估,但可以发现非主导解,作为数据消毒的一种替代方法。在两个数据集上进行了大量的实验,结果表明所设计的基于网格的算法比传统的单目标进化算法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信