Processing-in-Memory for Databases: Query Processing and Data Transfer

Alexander Baumstark, M. Jibril, K. Sattler
{"title":"Processing-in-Memory for Databases: Query Processing and Data Transfer","authors":"Alexander Baumstark, M. Jibril, K. Sattler","doi":"10.1145/3592980.3595323","DOIUrl":null,"url":null,"abstract":"The Processing-in-Memory (PIM) paradigm promises to accelerate data processing by pushing down computation to memory, reducing the amount of data transfer between memory and CPU, and – in this way – relieving the CPU from processing. Particularly, in in-memory databases memory access becomes a performance bottleneck. Thus, PIM seems to offer an interesting solution for database processing. In this work, we investigate how commercially available PIM technology can be leveraged to accelerate query processing by offloading (parts of) query operators to memory. Furthermore, we show how to address the problem of limited PIM storage capacity by interleaving transfer and computation and present a cost model for the data placement problem.","PeriodicalId":400127,"journal":{"name":"Proceedings of the 19th International Workshop on Data Management on New Hardware","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592980.3595323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Processing-in-Memory (PIM) paradigm promises to accelerate data processing by pushing down computation to memory, reducing the amount of data transfer between memory and CPU, and – in this way – relieving the CPU from processing. Particularly, in in-memory databases memory access becomes a performance bottleneck. Thus, PIM seems to offer an interesting solution for database processing. In this work, we investigate how commercially available PIM technology can be leveraged to accelerate query processing by offloading (parts of) query operators to memory. Furthermore, we show how to address the problem of limited PIM storage capacity by interleaving transfer and computation and present a cost model for the data placement problem.
数据库的内存处理:查询处理和数据传输
内存中处理(PIM)范式承诺通过将计算下推到内存来加速数据处理,减少内存和CPU之间的数据传输量,并以这种方式减轻CPU的处理负担。特别是在内存数据库中,内存访问成为性能瓶颈。因此,PIM似乎为数据库处理提供了一个有趣的解决方案。在这项工作中,我们研究了如何利用商业上可用的PIM技术通过将查询操作符(部分)卸载到内存中来加速查询处理。此外,我们展示了如何通过交叉传输和计算来解决PIM存储容量有限的问题,并提出了数据放置问题的成本模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信