Impact of Signature Legibility and Signature Type in Off-Line Signature Verification

F. Alonso-Fernandez, M. Fairhurst, Julian Fierrez, J. Ortega-Garcia
{"title":"Impact of Signature Legibility and Signature Type in Off-Line Signature Verification","authors":"F. Alonso-Fernandez, M. Fairhurst, Julian Fierrez, J. Ortega-Garcia","doi":"10.1109/BCC.2007.4430548","DOIUrl":null,"url":null,"abstract":"The performance of two popular approaches for off-line signature verification in terms of signature legibility and signature type is studied. We investigate experimentally if the knowledge of letters, syllables or name instances can help in the process of imitating a signature. Experimental results are given on a sub-corpus of the MCYT signature database for random and skilled forgeries. We use for our experiments two machine experts, one based on global image analysis and statistical distance measures, and the second based on local image analysis and Hidden Markov Models. Verification results are reported in terms of Equal Error Rate (EER), False Acceptance Rate (FAR) and False Rejection Rate (FRR).","PeriodicalId":389417,"journal":{"name":"2007 Biometrics Symposium","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2007.4430548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

The performance of two popular approaches for off-line signature verification in terms of signature legibility and signature type is studied. We investigate experimentally if the knowledge of letters, syllables or name instances can help in the process of imitating a signature. Experimental results are given on a sub-corpus of the MCYT signature database for random and skilled forgeries. We use for our experiments two machine experts, one based on global image analysis and statistical distance measures, and the second based on local image analysis and Hidden Markov Models. Verification results are reported in terms of Equal Error Rate (EER), False Acceptance Rate (FAR) and False Rejection Rate (FRR).
签名易读性和签名类型对离线签名验证的影响
研究了两种常用的离线签名验证方法在签名易读性和签名类型方面的性能。我们通过实验研究字母、音节或名字实例的知识是否有助于模仿签名的过程。在随机伪造和熟练伪造的MCYT特征库子语料库上给出了实验结果。我们在实验中使用了两个机器专家,一个基于全局图像分析和统计距离度量,另一个基于局部图像分析和隐马尔可夫模型。验证结果以等错误率(EER)、误接受率(FAR)和误拒率(FRR)的形式报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信