F. Alonso-Fernandez, M. Fairhurst, Julian Fierrez, J. Ortega-Garcia
{"title":"Impact of Signature Legibility and Signature Type in Off-Line Signature Verification","authors":"F. Alonso-Fernandez, M. Fairhurst, Julian Fierrez, J. Ortega-Garcia","doi":"10.1109/BCC.2007.4430548","DOIUrl":null,"url":null,"abstract":"The performance of two popular approaches for off-line signature verification in terms of signature legibility and signature type is studied. We investigate experimentally if the knowledge of letters, syllables or name instances can help in the process of imitating a signature. Experimental results are given on a sub-corpus of the MCYT signature database for random and skilled forgeries. We use for our experiments two machine experts, one based on global image analysis and statistical distance measures, and the second based on local image analysis and Hidden Markov Models. Verification results are reported in terms of Equal Error Rate (EER), False Acceptance Rate (FAR) and False Rejection Rate (FRR).","PeriodicalId":389417,"journal":{"name":"2007 Biometrics Symposium","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2007.4430548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
The performance of two popular approaches for off-line signature verification in terms of signature legibility and signature type is studied. We investigate experimentally if the knowledge of letters, syllables or name instances can help in the process of imitating a signature. Experimental results are given on a sub-corpus of the MCYT signature database for random and skilled forgeries. We use for our experiments two machine experts, one based on global image analysis and statistical distance measures, and the second based on local image analysis and Hidden Markov Models. Verification results are reported in terms of Equal Error Rate (EER), False Acceptance Rate (FAR) and False Rejection Rate (FRR).