GitSchemas: A Dataset for Automating Relational Data Preparation Tasks

Till Döhmen, Madelon Hulsebos, C. Beecks, Sebastian Schelter
{"title":"GitSchemas: A Dataset for Automating Relational Data Preparation Tasks","authors":"Till Döhmen, Madelon Hulsebos, C. Beecks, Sebastian Schelter","doi":"10.1109/icdew55742.2022.00016","DOIUrl":null,"url":null,"abstract":"The preparation of relational data for machine learning (ML) has largely remained a manual, labor-intensive process, while automated machine learning has made great strides in recent years. Long-standing challenges, such as reliable foreign key detection still pose a major hurdle towards more automation of data integration and preparation tasks. We created a new dataset aimed at increasing the level of automation of data preparation tasks for relational data. The dataset, called GITSCHEMAS, consists of schema metadata for almost 50k real-world databases, collected from public GitHub repositories. To our knowledge, this is the largest dataset of such kind, containing approximately 300k table names, 2M column names including data types, and 100k real (not semantically inferred) foreign key relationships. In this paper, we describe how Gitschemaswas created, and provide key insights into the dataset. Furthermore, we show how GITSCHEMAS can be used to find relevant tables for data augmentation in an AutoML setting.","PeriodicalId":429378,"journal":{"name":"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdew55742.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The preparation of relational data for machine learning (ML) has largely remained a manual, labor-intensive process, while automated machine learning has made great strides in recent years. Long-standing challenges, such as reliable foreign key detection still pose a major hurdle towards more automation of data integration and preparation tasks. We created a new dataset aimed at increasing the level of automation of data preparation tasks for relational data. The dataset, called GITSCHEMAS, consists of schema metadata for almost 50k real-world databases, collected from public GitHub repositories. To our knowledge, this is the largest dataset of such kind, containing approximately 300k table names, 2M column names including data types, and 100k real (not semantically inferred) foreign key relationships. In this paper, we describe how Gitschemaswas created, and provide key insights into the dataset. Furthermore, we show how GITSCHEMAS can be used to find relevant tables for data augmentation in an AutoML setting.
GitSchemas:用于自动化关系数据准备任务的数据集
长期存在的挑战,如可靠的外键检测,仍然是迈向数据集成和准备任务更加自动化的主要障碍。我们创建了一个新的数据集,旨在提高关系数据的数据准备任务的自动化水平。该数据集名为GITSCHEMAS,由从公共GitHub存储库收集的近50k个真实数据库的模式元数据组成。据我们所知,这是此类数据集中最大的数据集,包含大约300k个表名、2M个列名(包括数据类型)和100k个实际的(不是语义推断的)外键关系。在本文中,我们描述了gitschemasas是如何创建的,并提供了对数据集的关键见解。此外,我们将展示如何使用GITSCHEMAS在AutoML设置中查找用于数据增强的相关表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信