Neural Network Super-twisting based Repetitive Control for a Brushless DC Servo Motor with Parameter Uncertainty, Friction, and Backlash

Raymond Chuei, Z. Cao, Z. Man
{"title":"Neural Network Super-twisting based Repetitive Control for a Brushless DC Servo Motor with Parameter Uncertainty, Friction, and Backlash","authors":"Raymond Chuei, Z. Cao, Z. Man","doi":"10.1109/ANZCC.2018.8606543","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network super-twisting based repetitive control (NNSTRC) to improve the tracking accuracy of periodic signal. The proposed algorithm is robust against the plant uncertainty caused by the mass and viscous friction variation. Moreover, it compensates the nonlinear frictions, and the backlash by using the neural network based super-twisting algorithm. Firstly, a repetitive control (RC) is designed to track the periodic reference, and compensate the viscous frictions. Then, a stable neural network super twisting control (NNSTC) is constructed to compensate the nonlinear frictions, backlash, and plant uncertainty. The proposed algorithm is verified on a simulation model of rotational system. The simulation comparisons highlight the advantages of the proposed algorithm.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a neural network super-twisting based repetitive control (NNSTRC) to improve the tracking accuracy of periodic signal. The proposed algorithm is robust against the plant uncertainty caused by the mass and viscous friction variation. Moreover, it compensates the nonlinear frictions, and the backlash by using the neural network based super-twisting algorithm. Firstly, a repetitive control (RC) is designed to track the periodic reference, and compensate the viscous frictions. Then, a stable neural network super twisting control (NNSTC) is constructed to compensate the nonlinear frictions, backlash, and plant uncertainty. The proposed algorithm is verified on a simulation model of rotational system. The simulation comparisons highlight the advantages of the proposed algorithm.
具有参数不确定性、摩擦和间隙的无刷直流伺服电机的神经网络超扭转重复控制
为了提高周期信号的跟踪精度,提出了一种基于神经网络超扭转的重复控制方法。该算法对由质量和粘性摩擦变化引起的植物不确定性具有鲁棒性。此外,采用基于神经网络的超扭转算法对非线性摩擦和间隙进行补偿。首先,设计了一个重复控制(RC)来跟踪周期参考,并补偿粘性摩擦。然后,构造了一个稳定的神经网络超扭转控制(NNSTC)来补偿非线性摩擦、间隙和植物不确定性。在旋转系统仿真模型上验证了该算法的有效性。仿真结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信