Engagement-aware computing: modelling user engagement from mobile contexts

Akhil Mathur, N. Lane, F. Kawsar
{"title":"Engagement-aware computing: modelling user engagement from mobile contexts","authors":"Akhil Mathur, N. Lane, F. Kawsar","doi":"10.1145/2971648.2971760","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the potential of using mobile context to model user engagement. Taking an experimental approach, we systematically explore the dynamics of user engagement with a smartphone through three different studies. Specifically, to understand the feasibility of detecting user engagement from mobile context, we first assess an EEG artifact with 10 users and observe a strong correlation between automatically detected engagement scores and user's subjective perception of engagement. Grounded on this result, we model a set of application level features derived from smartphone usage of 10 users to detect engagement of a usage session using a Random Forest classifier. Finally, we apply this model to train a variety of contextual factors acquired from smartphone usage logs of 130 users to predict user engagement using an SVM classifier with a F1-Score of 0.82. Our experimental results highlight the potential of mobile contexts in designing engagement-aware applications and provide guidance to future explorations.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

In this paper, we examine the potential of using mobile context to model user engagement. Taking an experimental approach, we systematically explore the dynamics of user engagement with a smartphone through three different studies. Specifically, to understand the feasibility of detecting user engagement from mobile context, we first assess an EEG artifact with 10 users and observe a strong correlation between automatically detected engagement scores and user's subjective perception of engagement. Grounded on this result, we model a set of application level features derived from smartphone usage of 10 users to detect engagement of a usage session using a Random Forest classifier. Finally, we apply this model to train a variety of contextual factors acquired from smartphone usage logs of 130 users to predict user engagement using an SVM classifier with a F1-Score of 0.82. Our experimental results highlight the potential of mobile contexts in designing engagement-aware applications and provide guidance to future explorations.
参与感知计算:从移动环境建模用户参与
在本文中,我们研究了使用移动环境来模拟用户参与度的潜力。采用实验方法,我们通过三个不同的研究系统地探索了用户与智能手机互动的动态。具体来说,为了了解从移动环境中检测用户参与度的可行性,我们首先评估了10个用户的脑电图伪影,并观察到自动检测的参与度得分与用户对参与度的主观感知之间存在很强的相关性。基于这一结果,我们建立了一组应用程序级别的特征模型,这些特征来源于10个用户的智能手机使用情况,以使用随机森林分类器检测使用会话的参与度。最后,我们应用该模型训练从130名用户的智能手机使用日志中获取的各种上下文因素,使用F1-Score为0.82的SVM分类器预测用户参与度。我们的实验结果强调了移动环境在设计参与感知应用程序方面的潜力,并为未来的探索提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信