Quantum cryptography with imperfect apparatus

D. Mayers, A. Yao
{"title":"Quantum cryptography with imperfect apparatus","authors":"D. Mayers, A. Yao","doi":"10.1109/SFCS.1998.743501","DOIUrl":null,"url":null,"abstract":"Quantum key distribution, first proposed by C.H. Bennett and G. Brassard (1984), provides a possible key distribution scheme whose security depends only on the quantum laws of physics. So far the protocol has been proved secure even under channel noise and detector faults of the receiver but is vulnerable if the photon source used is imperfect. In this paper we propose and give a concrete design for a new concept, self-checking source, which requires the manufacturer of the photon source to provide certain tests; these tests are designed such that, if passed, the source is guaranteed to be adequate for the security of the quantum key distribution protocol, even though the testing devices may not be built to the original specification. The main mathematical result is a structural theorem which states that, for any state in a Hilbert space, if certain EPR-type equations are satisfied, the state must be essentially the orthogonal sum of EPR pairs.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"407","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 407

Abstract

Quantum key distribution, first proposed by C.H. Bennett and G. Brassard (1984), provides a possible key distribution scheme whose security depends only on the quantum laws of physics. So far the protocol has been proved secure even under channel noise and detector faults of the receiver but is vulnerable if the photon source used is imperfect. In this paper we propose and give a concrete design for a new concept, self-checking source, which requires the manufacturer of the photon source to provide certain tests; these tests are designed such that, if passed, the source is guaranteed to be adequate for the security of the quantum key distribution protocol, even though the testing devices may not be built to the original specification. The main mathematical result is a structural theorem which states that, for any state in a Hilbert space, if certain EPR-type equations are satisfied, the state must be essentially the orthogonal sum of EPR pairs.
设备不完善的量子密码术
量子密钥分发首先由C.H. Bennett和G. Brassard(1984)提出,它提供了一种可能的密钥分发方案,其安全性仅依赖于物理的量子定律。迄今为止,该协议已被证明即使在信道噪声和接收器检测器故障的情况下也是安全的,但如果所使用的光子源不完善,则易受攻击。本文提出了一种新的概念——自检源,并给出了具体的设计方案,这需要光子源的制造商提供一定的测试;这些测试的设计是这样的,如果通过了,即使测试设备可能没有按照原始规范构建,也可以保证源足以满足量子密钥分发协议的安全性。主要的数学结果是一个结构定理,该定理表明,对于希尔伯特空间中的任何状态,如果满足某些EPR型方程,则该状态本质上必须是EPR对的正交和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信