Bullet Screen Short Text Sentiment Analysis Algorithm

Li-jiao Liu, Shu-xu Zhao
{"title":"Bullet Screen Short Text Sentiment Analysis Algorithm","authors":"Li-jiao Liu, Shu-xu Zhao","doi":"10.1109/AEMCSE50948.2020.00123","DOIUrl":null,"url":null,"abstract":"Bullet screen can express the feeling of the audience when watching video. If emotional analysis and research are carried out on it, it is helpful to improve the accuracy of user recommendation system. The existing emotional analysis method of bullet screen text separates emotional symbols from text information and ignores emotional expression of emotional symbols in bullet screen. To this end, an emotional symbol space multi attention convolutional neural network model (ES-MACNN) is proposed for video barrage sentiment analysis, the model selects emoji and kaomoji to construct emotional symbol space, uses attention mechanism to describe the important degree of emotional information, and obtains deeper emotional feature information to achieve the purpose of improving classification accuracy. Through experimental verification and analysis, the ES-MACNN model has significantly improved classification precision and recall rate compared with the traditional model.","PeriodicalId":246841,"journal":{"name":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEMCSE50948.2020.00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Bullet screen can express the feeling of the audience when watching video. If emotional analysis and research are carried out on it, it is helpful to improve the accuracy of user recommendation system. The existing emotional analysis method of bullet screen text separates emotional symbols from text information and ignores emotional expression of emotional symbols in bullet screen. To this end, an emotional symbol space multi attention convolutional neural network model (ES-MACNN) is proposed for video barrage sentiment analysis, the model selects emoji and kaomoji to construct emotional symbol space, uses attention mechanism to describe the important degree of emotional information, and obtains deeper emotional feature information to achieve the purpose of improving classification accuracy. Through experimental verification and analysis, the ES-MACNN model has significantly improved classification precision and recall rate compared with the traditional model.
弹幕短文本情感分析算法
弹幕可以表达观众观看视频时的感受。如果对其进行情感分析和研究,有助于提高用户推荐系统的准确率。现有的弹幕文本情感分析方法将情感符号从文本信息中分离出来,忽略了情感符号在弹幕中的情感表达。为此,提出了一种情感符号空间多注意卷积神经网络模型(ES-MACNN)用于视频弹幕情感分析,该模型选取表情符号和表情符号构建情感符号空间,利用注意机制描述情感信息的重要程度,获取更深层次的情感特征信息,达到提高分类准确率的目的。通过实验验证和分析,ES-MACNN模型与传统模型相比,分类精度和召回率有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信