How to Approximate any Objective Function via Quadratic Unconstrained Binary Optimization

Thomas Gabor, M. Rosenfeld, Sebastian Feld, Claudia Linnhoff-Popien
{"title":"How to Approximate any Objective Function via Quadratic Unconstrained Binary Optimization","authors":"Thomas Gabor, M. Rosenfeld, Sebastian Feld, Claudia Linnhoff-Popien","doi":"10.1109/saner53432.2022.00149","DOIUrl":null,"url":null,"abstract":"Quadratic unconstrained binary optimization (QUBO) has become the standard format for optimization using quantum computers, i.e., for both the quantum approximate optimization algorithm (QAOA) and quantum annealing (QA). We present a toolkit of methods to transform almost arbitrary problems to QUBO by (i) approximating them as a polynomial and then (ii) translating any polynomial to QUBO. We showcase the usage of our approaches on two example problems (ratio cut and logistic regression).","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Quadratic unconstrained binary optimization (QUBO) has become the standard format for optimization using quantum computers, i.e., for both the quantum approximate optimization algorithm (QAOA) and quantum annealing (QA). We present a toolkit of methods to transform almost arbitrary problems to QUBO by (i) approximating them as a polynomial and then (ii) translating any polynomial to QUBO. We showcase the usage of our approaches on two example problems (ratio cut and logistic regression).
如何通过二次无约束二元优化逼近任意目标函数
二次无约束二进制优化(QUBO)已成为量子计算机优化的标准格式,即量子近似优化算法(QAOA)和量子退火算法(QA)。我们提出了一套方法,通过(i)将几乎任意问题近似为多项式,然后(ii)将任何多项式转换为QUBO,将它们转换为QUBO。我们在两个示例问题(比率切割和逻辑回归)上展示了我们的方法的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信