iHAT: Interactive hierarchical aggregation table

Corinna Vehlow, Julian Heinrich, F. Battke, D. Weiskopf, K. Nieselt
{"title":"iHAT: Interactive hierarchical aggregation table","authors":"Corinna Vehlow, Julian Heinrich, F. Battke, D. Weiskopf, K. Nieselt","doi":"10.1109/BIOVIS.2011.6094049","DOIUrl":null,"url":null,"abstract":"In the search for single-nucleotide polymorphisms (SNPs), genome wide association studies have become an important technique for the identification of associations between genotype and phenotype of a diverse set of sequence-based data. In this work, we present a methodology for the visual assessment of SNPs using interactive hierarchical aggregation techniques combined with methods known from traditional sequence browsers and cluster heatmaps. Our prototype tool iHAT supports the visualization of multiple sequence alignments, associated metadata, and hierarchical clusterings. Moreover, data-type dependent colormaps and aggregation strategies as well as different filtering options support the user in finding correlations between sequences and metadata. Similar to other visualizations such as parallel coordinates or heatmaps, iHAT is aimed at exploiting the human pattern-recognition ability for spotting patterns that might indicate correlation or anticorrelation. Together with its interactive features and a database backend for fast data retrieval, we consider iHAT as a prototype for a visual analytics system for genome-wide association studies.","PeriodicalId":354473,"journal":{"name":"2011 IEEE Symposium on Biological Data Visualization (BioVis).","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Biological Data Visualization (BioVis).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOVIS.2011.6094049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In the search for single-nucleotide polymorphisms (SNPs), genome wide association studies have become an important technique for the identification of associations between genotype and phenotype of a diverse set of sequence-based data. In this work, we present a methodology for the visual assessment of SNPs using interactive hierarchical aggregation techniques combined with methods known from traditional sequence browsers and cluster heatmaps. Our prototype tool iHAT supports the visualization of multiple sequence alignments, associated metadata, and hierarchical clusterings. Moreover, data-type dependent colormaps and aggregation strategies as well as different filtering options support the user in finding correlations between sequences and metadata. Similar to other visualizations such as parallel coordinates or heatmaps, iHAT is aimed at exploiting the human pattern-recognition ability for spotting patterns that might indicate correlation or anticorrelation. Together with its interactive features and a database backend for fast data retrieval, we consider iHAT as a prototype for a visual analytics system for genome-wide association studies.
交互式层次聚合表
在寻找单核苷酸多态性(SNPs)的过程中,全基因组关联研究已成为鉴定基因型和表型之间关联的重要技术。在这项工作中,我们提出了一种使用交互式分层聚合技术结合传统序列浏览器和聚类热图已知方法对snp进行视觉评估的方法。我们的原型工具iHAT支持多个序列比对、相关元数据和分层聚类的可视化。此外,依赖于数据类型的颜色映射和聚合策略以及不同的过滤选项支持用户查找序列和元数据之间的相关性。与平行坐标或热图等其他可视化类似,iHAT旨在利用人类模式识别能力来发现可能表示相关或反相关的模式。结合其交互功能和快速数据检索的数据库后端,我们认为iHAT是全基因组关联研究可视化分析系统的原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信