SETH-Hardness of Coding Problems

Noah Stephens-Davidowitz, V. Vaikuntanathan
{"title":"SETH-Hardness of Coding Problems","authors":"Noah Stephens-Davidowitz, V. Vaikuntanathan","doi":"10.1109/FOCS.2019.00027","DOIUrl":null,"url":null,"abstract":"We show that assuming the strong exponential-time hypothesis (SETH), there are no non-trivial algorithms for the nearest codeword problem (NCP), the minimum distance problem (MDP), or the nearest codeword problem with preprocessing (NCPP) on linear codes over any finite field. More precisely, we show that there are no NCP, MDP, or NCPP algorithms running in time q^ (1-ε)n for any constant ε>0 for codes with q^n codewords. (In the case of NCPP, we assume non-uniform SETH.) We also show that there are no sub-exponential time algorithms for γ-approximate versions of these problems for some constant γ > 1, under different versions of the exponential-time hypothesis.","PeriodicalId":407139,"journal":{"name":"2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2019.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We show that assuming the strong exponential-time hypothesis (SETH), there are no non-trivial algorithms for the nearest codeword problem (NCP), the minimum distance problem (MDP), or the nearest codeword problem with preprocessing (NCPP) on linear codes over any finite field. More precisely, we show that there are no NCP, MDP, or NCPP algorithms running in time q^ (1-ε)n for any constant ε>0 for codes with q^n codewords. (In the case of NCPP, we assume non-uniform SETH.) We also show that there are no sub-exponential time algorithms for γ-approximate versions of these problems for some constant γ > 1, under different versions of the exponential-time hypothesis.
编码问题的硬度
我们证明了在强指数时间假设(SETH)下,对于任何有限域上线性码的最近码字问题(NCP)、最小距离问题(MDP)或带预处理的最近码字问题(NCPP)都不存在非平凡算法。更准确地说,我们证明了对于具有q^n码字的代码,对于任何常数ε>0,在q^ (1-ε)n时间内没有NCP, MDP或NCPP算法运行。(在NCPP的情况下,我们假设非均匀SETH。)我们还证明了在不同版本的指数时间假设下,对于某些常数γ > 1,这些问题的γ-近似版本没有次指数时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信