Trigonometry-based motion blur parameter estimation algorithm

Ruchi Gajjar, T. Zaveri, A. Banerjee, K. Murthy
{"title":"Trigonometry-based motion blur parameter estimation algorithm","authors":"Ruchi Gajjar, T. Zaveri, A. Banerjee, K. Murthy","doi":"10.1504/IJIM.2018.10014060","DOIUrl":null,"url":null,"abstract":"Restoration of blurred images requires information about the blurring function, which is generally unknown in practical applications. Identification of blur parameters is essential for yielding blurring function. This paper proposes a technique for estimation of motion blur parameters by formulating trigonometric relationship between the spectral lines of the motion blurred image and the blur parameters. In majority of the existing motion blur parameter estimation approaches, length of motion blur is estimated by rotating the Fourier spectrum to estimated motion angle. This requires angle estimation to be done forehand. The proposed method estimates both, length and angle simultaneously by exploring the trigonometric relation between spectral lines, thereby eliminating the need of spectrum rotation for length estimation. The proposed technique is applied on Berkeley segmentation dataset, Pascal VOC 2007 and USC-SIPI image database. The simulation results prove that the proposed method exhibit better parameter estimation performance as compared to existing state-of-the-art techniques.","PeriodicalId":433219,"journal":{"name":"The International Journal on the Image","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal on the Image","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIM.2018.10014060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Restoration of blurred images requires information about the blurring function, which is generally unknown in practical applications. Identification of blur parameters is essential for yielding blurring function. This paper proposes a technique for estimation of motion blur parameters by formulating trigonometric relationship between the spectral lines of the motion blurred image and the blur parameters. In majority of the existing motion blur parameter estimation approaches, length of motion blur is estimated by rotating the Fourier spectrum to estimated motion angle. This requires angle estimation to be done forehand. The proposed method estimates both, length and angle simultaneously by exploring the trigonometric relation between spectral lines, thereby eliminating the need of spectrum rotation for length estimation. The proposed technique is applied on Berkeley segmentation dataset, Pascal VOC 2007 and USC-SIPI image database. The simulation results prove that the proposed method exhibit better parameter estimation performance as compared to existing state-of-the-art techniques.
基于三角函数的运动模糊参数估计算法
模糊图像的恢复需要关于模糊函数的信息,这在实际应用中通常是未知的。模糊参数的辨识是模糊函数生成的关键。本文提出了一种利用运动模糊图像的光谱线与模糊参数之间的三角关系来估计运动模糊参数的方法。在现有的大多数运动模糊参数估计方法中,运动模糊的长度估计是通过旋转傅里叶频谱估计运动角度。这需要用正手进行角度估计。该方法通过探索光谱线之间的三角关系,同时估计长度和角度,从而消除了对光谱旋转进行长度估计的需要。将该方法应用于Berkeley分割数据集、Pascal VOC 2007和USC-SIPI图像数据库。仿真结果表明,与现有的技术相比,该方法具有更好的参数估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信