{"title":"Reliability of Layered Neural Oscillator Networks","authors":"Kevin K. Lin, E. Shea-Brown, L. Young","doi":"10.4310/CMS.2009.V7.N1.A12","DOIUrl":null,"url":null,"abstract":"We study the reliability of large networks of coupled neural oscillators in response to fluctuating stimuli. Reliability means that a stimulus elicits essentially identical responses upon repeated presentations. We view the problem on two scales: neuronal reliability, which concerns the repeatability of spike times of individual neurons embedded within a network, and pooled-response reliability, which addresses the repeatability of the total synaptic output from the network. We find that individual embedded neurons can be reliable or unreliable depending on network conditions, whereas pooled responses of sufficiently large networks are mostly reliable. We study also the effects of noise, and find that some types affect reliability more seriously than others.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CMS.2009.V7.N1.A12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
We study the reliability of large networks of coupled neural oscillators in response to fluctuating stimuli. Reliability means that a stimulus elicits essentially identical responses upon repeated presentations. We view the problem on two scales: neuronal reliability, which concerns the repeatability of spike times of individual neurons embedded within a network, and pooled-response reliability, which addresses the repeatability of the total synaptic output from the network. We find that individual embedded neurons can be reliable or unreliable depending on network conditions, whereas pooled responses of sufficiently large networks are mostly reliable. We study also the effects of noise, and find that some types affect reliability more seriously than others.