The Survivor Problem: Simple Linear Regression with MCMC

T. Donovan, R. Mickey
{"title":"The Survivor Problem: Simple Linear Regression with MCMC","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0017","DOIUrl":null,"url":null,"abstract":"While one of the most common uses of Bayes’ Theorem is in the statistical analysis of a dataset (i.e., statistical modeling), this chapter examines another application of Gibbs sampling: parameter estimation for simple linear regression. In the “Survivor Problem,” the chapter considers the relationship between how many days a contestant lasts in a reality-show competition as a function of how many years of formal education they have. This chapter is a bit more complicated than the previous chapter because it involves estimation of the joint posterior distribution of three parameters. As in earlier chapters, the estimation process is described in detail on a step-by-step basis. Finally, the posterior predictive distribution is estimated and discussed. By the end of the chapter, the reader will have a firm understanding of the following concepts: linear equation, sums of squares, posterior predictive distribution, and linear regression with Markov Chain Monte Carlo and Gibbs sampling.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While one of the most common uses of Bayes’ Theorem is in the statistical analysis of a dataset (i.e., statistical modeling), this chapter examines another application of Gibbs sampling: parameter estimation for simple linear regression. In the “Survivor Problem,” the chapter considers the relationship between how many days a contestant lasts in a reality-show competition as a function of how many years of formal education they have. This chapter is a bit more complicated than the previous chapter because it involves estimation of the joint posterior distribution of three parameters. As in earlier chapters, the estimation process is described in detail on a step-by-step basis. Finally, the posterior predictive distribution is estimated and discussed. By the end of the chapter, the reader will have a firm understanding of the following concepts: linear equation, sums of squares, posterior predictive distribution, and linear regression with Markov Chain Monte Carlo and Gibbs sampling.
幸存者问题:MCMC的简单线性回归
虽然贝叶斯定理最常见的用途之一是数据集的统计分析(即统计建模),但本章研究吉布斯抽样的另一个应用:简单线性回归的参数估计。在“幸存者问题”中,这一章考虑了选手参加真人秀比赛的天数与他们接受正规教育的年数之间的关系。这一章比前一章稍微复杂一些,因为它涉及到三个参数的联合后验分布的估计。在前面的章节中,评估过程是一步一步详细描述的。最后,对后验预测分布进行了估计和讨论。在本章结束时,读者将对以下概念有一个牢固的理解:线性方程,平方和,后验预测分布,线性回归与马尔可夫链蒙特卡洛和吉布斯抽样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信