Nonparametric Probability Density Estimation for Sensor Networks Using Quantized Measurements

Aleksandar Dogandzic, Benhong Zhang
{"title":"Nonparametric Probability Density Estimation for Sensor Networks Using Quantized Measurements","authors":"Aleksandar Dogandzic, Benhong Zhang","doi":"10.1109/CISS.2007.4298410","DOIUrl":null,"url":null,"abstract":"We develop a nonparametric method for estimating the probability distribution function (pdf) describing the physical phenomenon measured by a sensor network. The measurements are collected by sensor-processor elements (nodes) deployed in the region of interest; the nodes quantize these measurements and transmit only one bit per observation to a fusion center. We model the measurement pdf as a Gaussian mixture and develop a Fisher scoring algorithm for computing the maximum likelihood (ML) estimates of the unknown mixture probabilities. We also estimate the number of mixture components as well as their means and standard deviation. Numerical simulations demonstrate the performance of the proposed method.","PeriodicalId":151241,"journal":{"name":"2007 41st Annual Conference on Information Sciences and Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 41st Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2007.4298410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We develop a nonparametric method for estimating the probability distribution function (pdf) describing the physical phenomenon measured by a sensor network. The measurements are collected by sensor-processor elements (nodes) deployed in the region of interest; the nodes quantize these measurements and transmit only one bit per observation to a fusion center. We model the measurement pdf as a Gaussian mixture and develop a Fisher scoring algorithm for computing the maximum likelihood (ML) estimates of the unknown mixture probabilities. We also estimate the number of mixture components as well as their means and standard deviation. Numerical simulations demonstrate the performance of the proposed method.
基于量化测量的传感器网络非参数概率密度估计
我们开发了一种非参数方法来估计描述由传感器网络测量的物理现象的概率分布函数。测量值由部署在感兴趣区域的传感器处理器元素(节点)收集;这些节点量化这些测量结果,每次观测只向融合中心传输一个比特。我们将测量pdf建模为高斯混合,并开发了用于计算未知混合概率的最大似然(ML)估计的Fisher评分算法。我们还估计了混合成分的数量以及它们的均值和标准差。数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信