Solving exercise generation problems by diversity oriented meta-heuristics

Blanka Láng, Z. T. Kardkovács
{"title":"Solving exercise generation problems by diversity oriented meta-heuristics","authors":"Blanka Láng, Z. T. Kardkovács","doi":"10.1109/SKIMA.2016.7916196","DOIUrl":null,"url":null,"abstract":"Evolutionary algorithms used for multi-objective optimization mostly prioritize fitness over diversity to achieve a single optimum fast, or a region in the Pareto-front. In this paper, we argue on that diversity should be a primary objective as well, and we propose a novel approach called EGAL to solve a well-known problem: to generate very different exercises to test students' knowledge in a specific range of topics. We show that focusing on diversity and fitness at the same time result in a better quality of solutions in the resulting population.","PeriodicalId":417370,"journal":{"name":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA.2016.7916196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Evolutionary algorithms used for multi-objective optimization mostly prioritize fitness over diversity to achieve a single optimum fast, or a region in the Pareto-front. In this paper, we argue on that diversity should be a primary objective as well, and we propose a novel approach called EGAL to solve a well-known problem: to generate very different exercises to test students' knowledge in a specific range of topics. We show that focusing on diversity and fitness at the same time result in a better quality of solutions in the resulting population.
用面向多样性的元启发式方法求解习题生成问题
用于多目标优化的进化算法通常优先考虑适应度而不是多样性,以快速实现单个最优,或在Pareto-front区域。在本文中,我们认为多样性也应该是一个主要目标,我们提出了一种称为EGAL的新方法来解决一个众所周知的问题:生成非常不同的练习来测试学生在特定主题范围内的知识。我们表明,同时关注多样性和适应度会在最终种群中获得更好的解决方案质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信