Experiences with English-Hindi, English-Tamil and English-Kannada Transliteration Tasks at NEWS 2009

Manoj Kumar Chinnakotla, O. Damani
{"title":"Experiences with English-Hindi, English-Tamil and English-Kannada Transliteration Tasks at NEWS 2009","authors":"Manoj Kumar Chinnakotla, O. Damani","doi":"10.3115/1699705.1699716","DOIUrl":null,"url":null,"abstract":"We use a Phrase-Based Statistical Machine Translation approach to Transliteration where the words are replaced by characters and sentences by words. We employ the standard SMT tools like GIZA++ for learning alignments and Moses for learning the phrase tables and decoding. Besides tuning the standard SMT parameters, we focus on tuning the Character Sequence Model (CSM) related parameters like order of the CSM, weight assigned to CSM during decoding and corpus used for CSM estimation. Our results show that paying sufficient attention to CSM pays off in terms of increased transliteration accuracies.","PeriodicalId":262513,"journal":{"name":"NEWS@IJCNLP","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1699705.1699716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We use a Phrase-Based Statistical Machine Translation approach to Transliteration where the words are replaced by characters and sentences by words. We employ the standard SMT tools like GIZA++ for learning alignments and Moses for learning the phrase tables and decoding. Besides tuning the standard SMT parameters, we focus on tuning the Character Sequence Model (CSM) related parameters like order of the CSM, weight assigned to CSM during decoding and corpus used for CSM estimation. Our results show that paying sufficient attention to CSM pays off in terms of increased transliteration accuracies.
英语-印地语,英语-泰米尔语和英语-卡纳达语在新闻2009音译任务的经验
我们使用基于短语的统计机器翻译方法进行音译,其中单词被字符替换,句子被单词替换。我们使用标准的SMT工具,如giz++来学习对齐,使用Moses来学习短语表和解码。除了调整标准的SMT参数外,我们还重点调整了字符序列模型(CSM)的相关参数,如CSM的顺序,解码过程中分配给CSM的权重以及用于CSM估计的语料库。我们的研究结果表明,在提高音译精度方面,对CSM给予足够的重视是有回报的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信