{"title":"Causal Strength","authors":"J. Sprenger, S. Hartmann","doi":"10.1093/oso/9780199672110.003.0006","DOIUrl":null,"url":null,"abstract":"The question “When is C a cause of E?” is well-studied in philosophy—much more than the equally important issue of quantifying the causal strength between C and E. In this chapter, we transfer methods from Bayesian Confirmation Theory to the problem of explicating causal strength. We develop axiomatic foundations for a probabilistic theory of causal strength as difference-making and proceed in three steps: First, we motivate causal Bayesian networks as an adequate framework for defining and comparing measures of causal strength. Second, we demonstrate how specific causal strength measures can be derived from a set of plausible adequacy conditions (method of representation theorems). Third, we use these results to argue for a specific measure of causal strength: the difference that interventions on the cause make for the probability of the effect. An application to outcome measures in medicine and discussion of possible objections concludes the chapter.","PeriodicalId":140328,"journal":{"name":"Bayesian Philosophy of Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Philosophy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780199672110.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The question “When is C a cause of E?” is well-studied in philosophy—much more than the equally important issue of quantifying the causal strength between C and E. In this chapter, we transfer methods from Bayesian Confirmation Theory to the problem of explicating causal strength. We develop axiomatic foundations for a probabilistic theory of causal strength as difference-making and proceed in three steps: First, we motivate causal Bayesian networks as an adequate framework for defining and comparing measures of causal strength. Second, we demonstrate how specific causal strength measures can be derived from a set of plausible adequacy conditions (method of representation theorems). Third, we use these results to argue for a specific measure of causal strength: the difference that interventions on the cause make for the probability of the effect. An application to outcome measures in medicine and discussion of possible objections concludes the chapter.