Practical large scale what-if queries: case studies with software risk assessment

T. Menzies, E. Sinsel
{"title":"Practical large scale what-if queries: case studies with software risk assessment","authors":"T. Menzies, E. Sinsel","doi":"10.1109/ASE.2000.873661","DOIUrl":null,"url":null,"abstract":"When a lack of data inhibits decision-making, large-scale what-if queries can be conducted over the uncertain parameter ranges. Such queries can generate an overwhelming amount of data. We describe a general method for understanding that data. Large-scale what-if queries can guide Monte Carlo simulations of a model. Machine learning can then be used to summarize the output. The summarization is an ensemble of decision trees. The TARZAN system [so-called because it swings through (or searches) the decision trees] can poll the ensemble looking for majority conclusions regarding what factors change the classifications of the data. TARZAN can succinctly present the results from very large what-if queries. For example, in one of the studies presented, we can view the significant features from 10/sup 9/ what-if queries on half a page.","PeriodicalId":206612,"journal":{"name":"Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2000.873661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

When a lack of data inhibits decision-making, large-scale what-if queries can be conducted over the uncertain parameter ranges. Such queries can generate an overwhelming amount of data. We describe a general method for understanding that data. Large-scale what-if queries can guide Monte Carlo simulations of a model. Machine learning can then be used to summarize the output. The summarization is an ensemble of decision trees. The TARZAN system [so-called because it swings through (or searches) the decision trees] can poll the ensemble looking for majority conclusions regarding what factors change the classifications of the data. TARZAN can succinctly present the results from very large what-if queries. For example, in one of the studies presented, we can view the significant features from 10/sup 9/ what-if queries on half a page.
实用的大规模假设查询:软件风险评估的案例研究
当缺乏数据阻碍决策时,可以在不确定的参数范围内进行大规模的假设查询。这样的查询会产生大量的数据。我们描述了一种理解这些数据的一般方法。大规模的假设查询可以指导模型的蒙特卡罗模拟。然后可以使用机器学习来总结输出。摘要是决策树的集合。泰山系统(之所以叫泰山,是因为它在决策树中来回摆动)可以对集合进行轮询,寻找关于哪些因素改变了数据分类的大多数结论。泰山可以简洁地呈现非常大的假设查询的结果。例如,在其中一项研究中,我们可以在半页上查看10/sup / what-if查询的重要功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信