RDMI: Recursive Training-Based Diffusion Model for Multivariate Time Series Imputation

Y. Hwang, Seung-Chul Son, Nac-Woo Kim, S. Ko, Byung-Tak Lee
{"title":"RDMI: Recursive Training-Based Diffusion Model for Multivariate Time Series Imputation","authors":"Y. Hwang, Seung-Chul Son, Nac-Woo Kim, S. Ko, Byung-Tak Lee","doi":"10.1109/ITC-CSCC58803.2023.10212776","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach for imputing missing values in multivariate time series using a recursive training-based diffusion model. Our proposed framework incorporates meta-learning, self-conditioning, and recursive training as key components to enhance imputation performance. We evaluate the model on two publicly available real-world datasets and achieve an improvement in RMSE, MAE, CRPS, MAPE, and SMAPE compared to the state-of-the-art model. Additionally, our ablation study confirms that each proposed technique has a meaningful effect on MTS imputation.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel approach for imputing missing values in multivariate time series using a recursive training-based diffusion model. Our proposed framework incorporates meta-learning, self-conditioning, and recursive training as key components to enhance imputation performance. We evaluate the model on two publicly available real-world datasets and achieve an improvement in RMSE, MAE, CRPS, MAPE, and SMAPE compared to the state-of-the-art model. Additionally, our ablation study confirms that each proposed technique has a meaningful effect on MTS imputation.
基于递归训练的多元时间序列插值扩散模型
本文提出了一种基于递归训练扩散模型的多元时间序列缺失值输入方法。我们提出的框架将元学习、自我调节和递归训练作为提高imputation性能的关键组成部分。我们在两个公开可用的真实世界数据集上评估了该模型,并与最先进的模型相比,在RMSE、MAE、CRPS、MAPE和SMAPE方面取得了改进。此外,我们的消融研究证实了每种提出的技术都对MTS的估算有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信